ОРИГИНАЛЬНАЯ СТАТЬЯ ORIGINAL ARTICLE https://doi.org/10.20340/vmi-rvz.2025.4.MORPH.7 УДК 611.92:611.018.2]:612.67-092.9

АНАТОМИЯ ФИБРО-СЕПТАЛЬНОЙ СЕТИ И СВЯЗОЧНОГО АППАРАТА ЛИЦА: СРАВНИТЕЛЬНЫЙ АНАЛИЗ СТАТИЧЕСКИХ И ДИНАМИЧЕСКИХ ОБЛАСТЕЙ В ПРОЦЕССЕ СТАРЕНИЯ

Г.В. Можейко¹, А.А. Супильников^{1, 2}

¹Медицинский университет «Реавиз», ул. Чапаевская, д. 227, г. Самара, 443001, Россия ²Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, ул. Островитянова, д. 1, г. Москва, 117513, Россия

Резюме. Цель исследования: провести морфофункциональный анализ фибро-септальной сети и связочного аппарата в статических (височная, околоушно-жевательная) и динамических (скуловая, щёчная) областях лица с оценкой возрастных изменений и фиксирующих возможностей. Материалы и методы. Выполнена диссекция двух кадаверных голов с предварительным заполнением сосудов силиконом. Проведено послойное препарирование с выделением кожи, подкожно-жировой клетчатки, мышечно-апоневротического слоя (SMAS) и основных удерживающих связок. Применялись методы эндоскопии рыхлой волокнистой ткани, биомеханического тестирования и фотодокументации. Результаты. Выявлены региональные различия в строении фибро-септальной сети. Височная область характеризуется плотной соединительной тканью с выраженной фибро-септальной сетью и височной адгезией как основной фиксирующей структурой. Скуловая область содержит мобильные жировые пакеты и скуловую связку, что обуславливает подверженность гравитационному птозу. Щёчная область отличается высокой димамической активностью с эластичными септами и щёчной связкой. Околоушно-жевательная область представлена плотными малоподвижными структурами с жевательной связкой. Биомеханические изменения при старении: снижение модуля упругости в височной области на 15-20%, уменьшение плотности коллагена в скуловой области на 30-35%, увеличение растяжимости связок щёчной области на 25-30%. Заключение. Фибро-септальная сеть и связочный аппарат демонстрируют региональную специфичность строения и функций. Наибольшие возрастные изменения наблюдаются в динамических зонах. Полученные данные обосновывают необходимость персонализированного подхода к коррекции возрастных изменений с учётом биомеханических характеристик и локальных морфологических особенностей.

Ключевые слова: фибро-септальная сеть [D003238]; связочный аппарат [D008022]; височная область [D013701]; скуловая область [D015050]; щёчная область [D002610]; околоушно-жевательная область [D010306] + [D008406]; хроно-старение [D000375]; коллагеновые волокна [D003094]; биомеханика [D001696]; лицевые фасции [D005205]; поверхностная мышечно-апоневротическая система [D005152]; морфо-функциональный анализ [D000715] + [D010827]; мягкие ткани лица [D005145]; возрастные изменения [D000367].

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов. Супильников А.А. является членом редакционной коллегии журнала, в принятии решения о публикации статьи участия не принимал.

Финансирование. Исследование проводилось без спонсорской поддержки.

Для цитирования: Можейко Г.В., Супильников А.А. Анатомия фибро-септальной сети и связочного аппарата лица: сравнительный анализ статических и динамических областей в процессе старения. *Вестник медицинского института «РЕАВИЗ»: Реабилитация, Врач и Здоровые.* 2025;15(4):137–148. https://doi.org/10.20340/vmi-rvz.2025.4.MORPH.7

ANATOMY OF THE FIBRO-SEPTAL NETWORK AND LIGAMENTOUS APPARATUS OF THE FACE: COMPARATIVE ANALYSIS OF STATIC AND DYNAMIC REGIONS DURING AGING

Georgiy V. Mozheyko¹, Aleksey A. Supilnikov^{1, 2}

¹Medical University Reaviz, 227, Chapaevskaya St., Samara, 443001, Russia ²Pirogov Russian National Research Medical University, 1, Ostrovityanova St., Moscow, 117513, Russia

Abstract. Objective: To conduct a morphofunctional analysis of the fibro-septal network and ligamentous apparatus in static (temporal, parotid-masseteric) and dynamic (zygomatic, buccal) facial regions with assessment of age-related changes and fixation capabilities. *Materials and methods*. Dissection of two cadaveric heads with preliminary silicone filling of vessels was performed. Layer-by-layer dissection was conducted with isolation of skin, subcutaneous fat, musculoaponeurotic layer (SMAS), and main retaining ligaments. Methods of loose fibrous tissue endoscopy, biomechanical testing, and photodocumentation were applied. *Results*. Regional differences in fibro-septal network structure were revealed. The temporal region is characterized by dense connective tissue with pronounced fibro-septal network and temporal adhesion as the main fixation structure. The zygomatic region contains mobile fat compartments and zygomatic ligament, which determines susceptibility to gravitational ptosis. The buccal region is distinguished by high dynamic activity with elastic septa and buccal ligament. The parotid-masseteric region is represented by dense, minimally mobile structures with masseteric ligament. Biomechanical changes during aging: 15–20% decrease in elastic modulus in temporal region, 30–35% reduction in collagen density in zygomatic region, 25–30% increase in ligament extensibility in buccal region. *Conclusion*. The fibro-septal network and ligamentous apparatus demonstrate regional specificity of structure and function. The greatest age-related changes are observed in dynamic zones. The obtained data substantiate the necessity of a personalized approach to correction of age-related changes considering biomechanical characteristics and local morphological features.

Keywords: Fibro-septal network / Connective Tissue [D003238]; Ligamentous apparatus / Ligaments [D008022]; Temporal region / Temporal Bone [D013701]; Zygomatic region / Zygoma [D015050]; Buccal region / Cheek [D002610]; Parotid-masseteric region / Parotid Gland [D010306) + Masseter Muscle [D008406]; Chrono-aging / Aging [D000375]; Collagen fibers / Collagen [D003094]; Biomechanics / Biomechanical Phenomena [D001696]; Facial fascia / Fascia [D005205]; Superficial musculoaponeurotic system / Facial Muscles [D005152]; Morpho-functional analysis / Anatomy [D000715) + Physiology [D010827]; Facial soft tissues / Face [D005145]; Age-related changes / Age Factors [D000367].

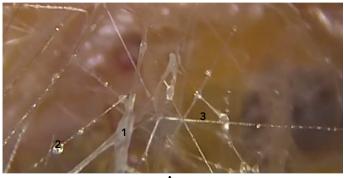
Competing interests. The authors declare no competing interests. Supilnikov A.A. is a member of the editorial board of the journal, did not participate in the decision to publish the article

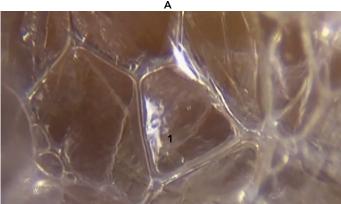
Funding. This research received no external funding.

Cite as: Mozheyko G.V., Supilnikov A.A. Anatomy of the fibro-septal network and ligamentous apparatus of the face: comparative analysis of static and dynamic regions during aging. *Bulletin of the Medical Institute "REAVIZ"*: *Rehabilitation, Doctor and Health.* 2025;15(4):137–148. https://doi.org/10.20340/vmi-rvz.2025.4.MORPH.7

Введение

Фибро-септальная сеть и связочный аппарат лица являются ключевыми структурами, обеспечивающими пространственную организацию мягких тканей и устойчивость к гравитационным и мимическим нагрузкам. Эти структуры формируют трёхмерную каркасную систему, распределяя механическое напряжение и поддерживая динамическое равновесие между кожей, жировыми пакетами, поверхностной мышечно-апоневротической системой (SMAS) и костными опорами (рис. 1). Физические и механические параметры соединительнотканного каркаса мягких тканей лица зависят от множества параметров, начиная от особенностей эмбриогенеза, этногенеза (в рамках адаптации соединительной ткани к различным климатическим условиям, таким как уровень инсоляции, температура окружающей среды, атмосферное давление, уровень влажности воздуха и так далее; характер питания; образ жизни (кочевой, оседлый)), возраста, наличия или отсутствия соматических заболеваний и генетических отклонений. Различные анатомические зоны лица обладают индивидуальными морфофункциональными характеристиками, определяющими скорость и выраженность возрастных изменений. Височная, скуловая, щёчная и околоушно-жевательная области подвержены разной


степени хроностарения в зависимости от плотности соединительной ткани, наличия мобильных жировых пакетов и функциональной нагрузки мимической мускулатуры.


В данной статье рассматриваются особенности строения и функционирования фибро-септальной сети и связочного аппарата в этих областях, а также их возрастные изменения.

В аспекте рассмотрения фибро-септальной сети и связочного аппарата лица стоит рассмотреть морфофункциональные особенности соединительной ткани.

Фибробласты - основной клеточный дифферон соединительной ткани, осуществляющий в норме физиологическую регенерацию основных компонентов её межклеточного матрикса: гликозоаминогликанов, коллагеновых и эластических волокон.

Соединительнотканным слоем кожи является дерма, подлежащие слои также содержат соединительную ткань в виде фибро-септальной сети, связочного аппарата и рыхлой волокнистой ткани, соответственно наибольшая концентрация фибробластов наблюдается именно там.

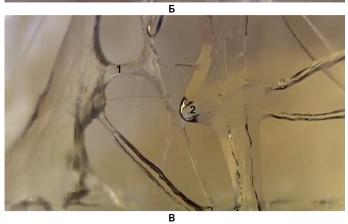


Рисунок 1. Структура фибро-септальной системы мягких тканей. Эндоскопическое исследование: А. Кратность увеличения ×3: 1. Соединительно-тканная септа 2. Гиалуроновая кислота 3. Коллагеновое волокно. Б. Кратность увеличения ×5: 1. Ячеистая структура фибро-септальной системы мягких тканей. В. Кратность увеличения ×10: 1. Гиалуроновая кислота 2. Коллагеновое волокно Figure 1. Structure of the fibro-septal system of soft tissues. Endoscopic examination: A. Magnification ×3: 1. Connective tissue septum 2. Hyaluronic acid 3. Collagen fiber. Б. Magnification ×5: 1. Cellular structure of the fibro-septal system of soft tissues.

B. Magnification ×10: 1. Hyaluronic acid 2. Collagen fiber

Фибробласты высокочувствительны к биомеханическим характеристиками окружающего межклеточного матрикса. Они могут определять подобные изменения, данный механизм называется механочувствительность, и преобразовывать эти изменения в межклеточные сигналы - свойство механотрансдукции. Миграция фибробластов в зону воздействия повреждающего фактора обусловлена

экспрессией сигнальных молекул, синтезируемых макрофагами, тучными клетками и эндотелиоцитами, оказывая регуляторное влияние на описанные выше типы клеток, обуславливая взаимную регуляцию всех клеточных процессов в зоне репарации.

Синтетическая активность фибробластов первична в фазе пролиферации и далее в фазе организации рубца. При этом миграция и последующий синтез в зоне репарации характерен для так называемых «репаративных фибробластов». Репаративные фибробласты - это разновидность клеток фибробластического дифферона, находящихся на коллагеновых волокнах и продуцирующих аморфные и волокнистые компоненты межклеточного матрикса, участвуя в его построении в условиях репарации. Основным критерием синтетической активности репаративных фибробластов является преобладание синтеза коллагена 3-го типа и отсутствие органоспецифичности в создаваемой репаративной соединительнотканной основе. Основное количество репаративных фибробластов по завершении процесса регенерации подвергается апоптозу, меньшинство - дифференцируется в фиброциты, основной функцией которых является поддержание стабильности межклеточного матрикса. Миофибробласты - особый тип фибробластов, которые также участвуют в синтезе коллагена и в сокращении краёв и стенок раневого дефекта. Сформированные ими волокна пронизывают цитоплазму клетки, оканчиваясь на её мембране в фибронексусах это адгезивный комплекс трансмембранных белков, связывающий внутриклеточный актин с фибронектином на поверхности коллагеновых фибрилл в экстрацеллюлярном матриксе, что обеспечивает функцию механотрансдукции. Механическое напряжение, возникающая при сокращении гладкомышечных волокон, передаётся в окружающий межклеточный матрикс. В процессе сокращения тканевого дефекта миофибробласты могут образовывать многоклеточные сократительные единицы за счёт образования щелевидных контактов.

Коллаген - главный фибриллярный белок межклеточного матрикса соединительной ткани. Является одним из самых важных компонентов формирования и функционирования соединительно-тканного остова и связочного аппарата мягких тканей. Коллаген синтезируется фибробластами как в условиях роста и развития организма, физиологической регенерации, так и при репаративных процессах.

Для химической структуры полипептидной молекулы коллагена характерны регулярно повторяющиеся трипептидные последовательности «Gly-XXX-YYY», где первая позиция всегда занята остатком аминокислоты глицина, в положении XXX чаще всего находится остаток пролина, а YYY может быть

представлен остатком любой аминокислоты, чаще это гидроксипролин. Особенностью является полное отсутствие остатков триптофана в составе коллагенового полипептида. Для вторичной структуры коллагеновой полипептидной цепи характерна конформация левовращающей альфа-спирали, на каждый виток которой приходится по три аминокислотных остатка. Три альфа-цепи, в свою очередь, образуют правозакрученную суперспираль макромолекулы тропоколлагена. Это возможно благодаря прочным водородным связям, возникающим между амино- и карбоксильными группами первичных альфа-цепей. Данное трёхспиральное строение макромолекулы характерно для всех типов коллагеновых белков, имеет общее название специфического «коллагенового» (COL) домена. Следующий этап - это агрегация молекул тропоколлагена с образованием фибриллярных или нефибриллярных структур. Особенностью коллагеновых фибрилл является поперечная исчерченность, она обусловлена спецификой аминокислотного состава и особенностями трёхмерной укладки коллагеновых молекул при формировании фибрилл. Семейство коллагеновых белков является весьма гетерогенным и подразделяется по структурному признаку на фибриллярные и нефибриллярные коллагены. Учитывая различия в аминокислотном составе полипептидных цепей коллагеновые белки образуют различные типы, коих на сегодняшний день насчитывается 28. В межклеточном матриксе мягких тканей лица преобладают коллагены 1-го и 3-го типов, соотношение которых в норме составляет примерно 4:1 в пользу 1-го типа. Эти типы коллагенов имеют фибриллярную структуру. По строению коллаген 3-го типа представляет собой гомотример, то есть его макромолекула состоит из трёх идентичных по аминокислотному составу альфаспиралей и имеет молекулярную формулу [α 1(III)]3. Коллаген 1-го типа является гетеротримером, состоящим из двух альфа-1 спиралей и одной спирали альфа-2, молекулярная формула $[\alpha 1(I)]2\alpha 2(I)$. При этом каждый тип альфа-спирали является продуктом экспрессии отдельного гена. полипептида-предшественника Синтез спирали коллагена происходит на рибосомах гранулярной эндоплазматической сети (ЭПС) фибробласта. Продуктом синтеза является препроальфа-цепь. С проникновением в цистерны ЭПС от N-конца спирали отщепляется сигнальный пептид, в результате чего образуется про-альфа-цепь. В дальнейшем, по мере продвижения по цистернам ЭПС, про-альфа-цепь подвергается процессам гидроксилирования (преобразования пролина в гидроксипролин и лизина в гидроксилизин) и спирализации с объединением трёх цепей в

тройную спираль проколлагена. Синтезированная макромолекула проколлагена перемещается из цистерн ЭПС в полости пластинчатого комплекса Гольджи, откуда секретируется в межклеточный матрикс. В межклеточном матриксе происходит отщепление терминальных пропептидов под действием содержащихся там протеолитических ферментов с образованием макромолекулы тропоколлагена. И, наконец, тропоколлагеновые молекулы вовлекаются в процесс фибриллогенеза - спонтанно протекающий процесс формирования системы поперечных связей между ними, конечным продуктом которого являются новообразованные коллагеновые фибриллы. В процессе репаративного гистогенеза основной объём производства коллагена берут на себя репаративные фибробласты, продуктом секреции которых является коллаген 3-го типа. Потому в составе репаративного соединительнотканного матрикса на ранних стадиях преобладает коллаген 3-го типа, который позднее замещается коллагеном 1-го типа. Синтезируемый в процессе репаративной регенерации соединительнотканный коллагеновый матрикс восстанавливает прочность ткани в месте повреждения, заменяя собой вренепрочный фибрин-фибронектиновый менный матрикс. Эластин - фибриллярный белок межклеточного матрикса соединительной ткани, продуцируемый фибробластами. Его основным свойством является упругость - способность подвергаться значительному растяжению с последующим возвращением в исходное состояние без потери свойств и остаточной деформации. Это возвращение не требует дополнительных затрат энергии. Эластические волокна, в состав которых входит белок эластин при экстрацеллюлярной сборке, придают соединительно-тканному остову свойство обратимой деформации при растяжении. Для химической структуры эластина характерно, как и для коллагена, высокое содержание остатков глицина (около 33%) и пролина (более 10%). Особенностью является преобладание в составе полипептидной цепи остатков гидрофобных аминокислот (более 40%). Макромолекула эластина имеет доменное строение и состоит из преобладающих гидрофобных доменов и повторяющихся через определённые интервалы гидрофильных доменов. Гидрофобные домены обеспечивают эластину его основные упруго-эластические свойства. Гидрофильные же участки полипептидной цепи имеют жёсткую пространственную структуру за счёт межмолекулярных поперечных связей и играют роль «ограничителей подвижности», предотвращающих чрезмерное растяжение молекулы и её чрезмерную релаксацию с потерей упорядоченной трёхмерной Синтез полипептидной структуры. цепипредшественника тропоэластина происходит также на рибосомах гранулярной эндоплазматической сети фибробластов. Далее также подвергается посттрансляционным изменениям в виде гидроксилирования пролина и лизина и секреции в экстрацеллюлярный матрикс. В отличии от коллагена, тропоэластин не подвергается значимому воздействию протеолитических ферментов в межклеточном матриксе. «Созревание» волокон тропоэластина заключается в преобразовании системы межмолекулярных поперечных связей с дальнейшей сборкой трёхмерной организованной структуры эластического волокна. Эластические волокна, определяемые при электронной микроскопии, тоньше коллагеновых фибрилл и не имеют поперечной исчерченности. Они имеют в составе фибриллярный и аморфный компоненты. Фибриллярный компонент представлен фибриллиновыми (эластическими) микрофибриллами, а аморфный белком эластином. При сборке эластического волокна фибриллярный компонент предшествует аморфному, определяя форму и направление будущего эластического волокна. В зависимости от соотношения эластических микрофибрилл и аморфного вещества выделяют четыре разновидности эластических волокон: 1) зрелые эластические волокна, 2) окситалановые волокна, 3) элауниновые волокна. Окситалановые волокна содержат в составе только фибриллярный компонент, они, как правило, присутствуют в местах постоянного воздействия механических нагрузок (периодонт, сухожилия, стенки сосудов). Данный вид волокон считается незрелым эластическим волокном. Элауниновые волокна являются промежуточной формой между окситалановыми и зрелыми эластическими волокнами. Они содержат как фибриллярный, так и аморфный компонент, в примерно одинаковом соотношении. Эластические волокна в тканях связаны друг с другом, образуя обширные сетевидные структуры и мембраны.

Процессы резорбции компонентов соединительнотканного матрикса имеют место как при физиологической, так и при репаративной регенерации. Факторы экзогенного и эндогенного воздействия могут как ускорять, так и замедлять резорбцию соединительно-тканного остова и связочного аппарата мягких тканей. При нормальной жизнедеятельности тканей процессы анаболизма и катаболизма компонентов экстрацеллюлярного матрикса находятся в динамическом равновесии. Возрастные гистологические изменения затрагивают все слои кожи и подлежащих тканей и заключаются в постепенном снижении процессов физиологической регенерации. Количество активно функционирующих фибробластов и доля пролиферирующих

(PCNA+) фибробластов в дермальном слое резко снижается. Уменьшение их количества считается результатом избыточной активности тучных клеток, затрудняющей способность ткани к ремоделированию. Снижается способность фибробластов к механотрансдукции, их цитоскелет становится более жестким, замедляя миграцию к месту развертывания регенеративного процесса. Миофибробласты экспрессируют меньше α-гладкомышечного актина $(\alpha\text{-SMA})$, отчего медленнее происходит контракция краёв раны. Также изменяется межклеточное вещество поверхностных и глубоких слоёв мягких тканей - уменьшается количество эластических волокон, коллагеновые волокна утолщаются, изменяется их структура. Увеличивается формирование поперечных связей между коллагеновыми волокнами, нарушающее их своевременную резорбцию и упорядоченность расположения. Молекулярные изменения волокнистых структур межклеточного матрикса приводят к дезорганизации фибриллярного каркаса и нарушению его биомеханических свойств, затруднению миграции клеток во время регенеративных процессов. Повышение активности матриксных металлопротеиназ при снижении выработки их ингибиторов приводит к фрагментации интактных волокон коллагена, снижая таким образом механическое натяжение фибробластов. Все вышеописанные процессы приводят к дополнительному снижению продукции коллагена, так как явление «механического натяжения фибробластов», возникающее в результате взаимодействия их интегриновых рецепторов со зрелыми коллагеновыми волокнами, является необходимым регуляторным механизмом активации синтеза компонентов межклеточного матрикса. Таким образом, нарушение клеточно-матриксных взаимодействий также является механизмом возрастных изменений мягких тканей, наряду с клеточным старением. Уменьшается количество гликозоаминогликановуглеводного компонента протеогликанов. Морфологические изменения в микроциркуляторном русле кожи и подкожно-жировой клетчатке с возрастом выражаются в его равномерном обеднении и в перераспределении капилляров. Подкожножировая клетчатка с возрастом подвергается неоднородным изменениям - в области лица жировые пакеты претерпевают атрофию, в то время как висцеральный жир с возрастом накапливается. При гистологическом исследовании атрофические изменения проявляются в виде уменьшения размеров адипоцитов и уменьшения количества перицеллюлярных волокнистых структур. Процессы репаративной регенерации с возрастом также претерпевают изменения, которые имеют разнонаправленный характер. За счёт замедления пролиферации клеток эндотелия и снижения продукции ими оксида азота (NO-) уменьшается капиллярная проницаемость как в общем, так и в месте развития репаративных процессов. При исследовании на моделях мышей старого и пожилого возраста наблюдалось замедление миграция из кровеносрусла макрофагов, лейкоцитов, Т- и В-лимфоцитов. Нейтрофильные лейкоциты демонстрируют возрастное увеличение секреции и ответа на многие цитокины, несмотря на замедленность миграции конечный уровень Т-лимфоцитов в скоплениях клеток регенеративного гистиона оказывается выше у старых животных. В рамках возрастных изменений также отмечается выраженное снижение процента фагоцитарных макрофагов среди клеток регенеративного гистиона, что влияет на количественный показатель и функциональную активность клеток, а именно снижение фагоцитарной активности макрофагов в процессе репаративной регенерации и уменьшение продукции ими факторов роста. Снижение количества и функциональной активности макрофагов как значимого регулятора фазы пролиферации обуславливает снижение формирования грануляционной ткани, снижение синтеза коллагена репаративными фибробластами, уменьшение числа репаративных фибробластов и миофибробластов, а также замедление процессов неоангиогенеза. Замедление неоангиогенеза при репаративных процессах в возрастной коже вызвано, помимо уменьшения синтеза индукторов ангиогенеза макрофагами и фибробластами, ещё и замедлением пролиферации эндотелиоцитов из-за снижения их реакции на гипоксию в паравульнарной зоне. Одним из основных регуляторов репаративного процесса являются тучные клетки, которые с возрастом увеличиваются в количестве в тканях кожи и слизистых, но снижают функциональную активность и чувствительность к межклеточным сигнальным молекулам, данные клетки имеют тесную топографическую и функциональную взаимосвязь с фибробластами как в дерме, так и в других соединительнотканных элементах организма. Фибробласты при возрастных изменениях демонстрируют сниженную миграционную активность в зону репарации, снижается продукция коллагена. В области протекания репаративных процессов в возрастных тканях образуется менее структурированный коллаген, и на выработку его уходит больше времени, чем в молодых тканях.

Материалы и методы

Анализ проведён на основе анатомических образцов - донорские ткани из височной, скуловой, щёчной и околоушно-жевательной областей.

Были препарированы два кадаверные головы (левая половина лица мужского пола, левая поло-

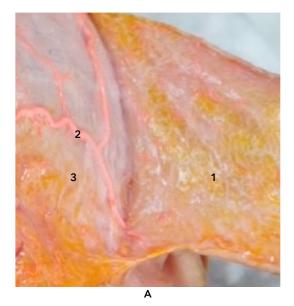
вина лица женского пола), сосуды которых были предварительно залиты силиконом для лучшей визуализации (артериальная система - красным цветом по специальной методике [7] в нашей модификации). Диссекцию проводили по границам областей начиная от разреза по височной линии в каудальном направлении по латеральной границе орбиты, вдоль верхней границы скуловой области, в каудальном направлении вдоль латеральной границы околоушно-жевательной области до нижнечелюстной линии, по нижней границы орбитальной области до латеральной границы наружного носа, вдоль медиальной границы подглазничной области, в каудальном направлении по границе области рта и подбородка до нижнечелюстной линии. Послойно были выделены следующие слои и структуры: кожа, подкожно-жировая клетчатка, мышечноапоневротический слой (SMAS), основные удерживающие связки лица.

Инструментальное исследование: эндоскопия рыхлой волокнистой ткани височной области.

Биомеханическое тестирование: измерение упругости и прочности соединительной ткани в различных зонах лица.

Клиническая оценка: фотодокументация.

Результаты


Морфофункциональные особенности фибро-септальной сети и связочного аппарата

1. Височная область

Представлена плотной соединительной тканью с выраженной фибро-септальной сетью и высоким уровнем межтканевой фиксации.

Содержит поверхностную, собственную и глубокую фасции. Поверхостные сосуды и височные ветви лицевого нерва расположены в поверхностной фасции. Между поверхностной и собственной фасцией выделяется слой рыхлой волокнистой ткани, представляющей собой упругую фибросептальную систему с отсутствием крупных сосудов (рис. 2). Медиальная граница височной области представлена височной линией, достаточно плотной структурой, глубокая фасция виска вплетается в периост фронтальной кости, взаимодействует с собственной фасцией, которая, в свою очередь, связана с поверхностной фасцией и кожей, по нижней границе образуя височную адгезию, которая является основной фиксирующей структурой для височной, лобной и орбитальной областей (рис. 3).

Старение сопровождается истончением соединительнотканных структур и перераспределением поверхностного жирового пакета, что способствует образованию впадины в латеральной части лба и верхней скуловой области.

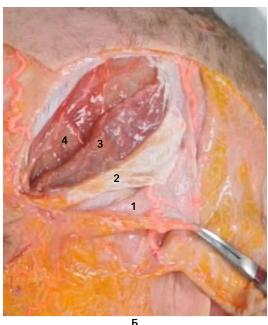


Рисунок 2. Послойное строение височной области: А. 1. Ячеистая структура фибро-септальной системы подкожно-жировой клетчатки; 2. Лобная ветвь поверхностной височной артерии; 3. Поверхностная фасция височной области. Б. 1. Поверхностная фасция височной области; 2. Глубокая фасция височной области; 3. Височная мышца; 4. Клиновидная кость

Figure 2. Layered structure of the temporal region: **A.** 1. Cellular structure of the fibroseptal system of subcutaneous fat; 2. Frontal branch of the superficial temporal artery; 3. Superficial fascia of the temporal region. **B.** 1. Superficial fascia of the temporal region; 2. Deep fascia of the temporal region; 3. Temporal muscle; 4. Sphenoid bone

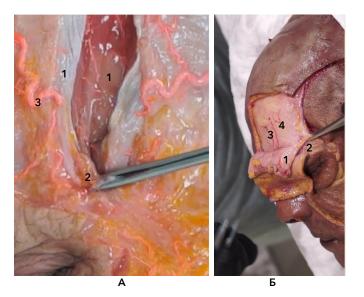


Рисунок 3. Височная адгезия. А. 1. Височная линия; 2. Височная адгезия; 3. Лобная ветвь поверхностной височной артерии (пересечена); 3. Височная мышца. Б. 1. Фронтальное брюшко лобно-затылочной мышцы; 2. Орбитальная часть круговой мышцы глаза; 3. Надблоковая артерия; 4. Надглазничная артерия; 5. Височная адгезия

Figure 3. Temporal adhesion. **A.** 1. Temporal line; 2. Temporal adhesion; 3. Frontal branch of the superficial temporal artery (crossed); 3. Temporalis muscle. **5.** 1. Frontal belly of the fronto-occipital muscle; 2. Orbital part of the orbicularis oculi muscle; 3. Supratrochlear artery; 4. Supraorbital artery; 5. Temporal adhesion

2. Скуловая область

Поверхностная фибро-септальная система находится в слое подкожно-жировой клетчатки, представлена соединительно-тканными септами ячеистого типа и разветвлёнными концевыми отделами связочного аппарата, обеспечивая подвижность кожи относительно SMAS. Основными связочными структурами являются скуловая связка (zygomatic ligament) и скуло-щёчная перегородка, соединяющие SMAS с надкостницей (рис. 4).

Область содержит мобильные жировые пакеты, что делает её подверженной гравитационному птозу. Возрастные изменения включают снижение плотности коллагена, перераспределение жировых пакетов и ослабление связочного аппарата, что приводит к формированию носогубных складок и снижению тонуса мягких тканей.

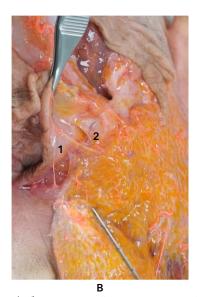


Рисунок 4. Фибро-септальная система и связочный аппарат скуловой области. А. Ячеистая структура фибро-септальной системы скуловой области. Б. 1. Скуловая связка; 2. Большая скуловая мышца; 3. Поперечная артерия лица. В. 1. Септа орбиты; 2. Скуло-щечная перегородка Figure 4. Fibro-septal system and ligamentous apparatus of the zygomatic region. A. Honeycomb structure of the fibro-septal system of the zygomatic region. Б. 1. Zygomatic ligament; 2. Zygomatic major muscle; 3. Transverse facial artery. B. 1. Orbital septum; 2. Zygomaticobuccal septum

3. Щёчная область

Поверхностная фибро-септальная система находится в слое подкожно-жировой клетчатки, представлена соединительно-тканными септами ячеистого типа, для данных септ характерна большая длина и эластичность с целью обеспечения активной мобильности. Характеризуется выраженной динамической активностью вследствие работы мимических мышц (щёчной мышцы, круговой мышцы рта) (рис. 5, A).

Связочный аппарат включает щёчную связку (buccal ligament), соединяющую SMAS с глубокой фасцией. Нижнечелюстная связка (mandibular ligament) сформирована местом фиксации мимических мышц (мышца, опускающая нижнюю губу (musculus depressor labii inferior), мышца, опускающая угол рта (musculus depressor anguli oris), поверхностная мышца шеи (musculus platysma)) к периосту тела нижней челюсти (рис. 5, Б).

С возрастом связочный аппарат ослабляется, что приводит к провисанию средней зоны лица и углублению носогубных складок.

4. Околоушно-жевательная область

Мягкие ткани данной области отличаются малой мобильностью и хорошей взаимосвязью друг с другом.

Фибро-септальная система представлена плотными соединительнотканными структурами, включая жевательную связку (masseteric ligament).

Околоушно-жевательная фасция является плотной соединительно-тканной структурой, может быть представлена в виде продолжения поверхностной мышцы шеи и покрывать всю околоушножевательную и нижнюю половину щечной области.

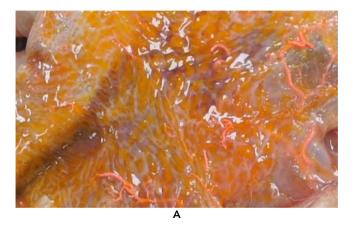
Обеспечивает фиксацию мягких тканей латерально-нижнего края лица и стабильность линии нижней челюсти (рис. 6).

В процессе хроностарения наблюдается снижение эластичности фасциальных структур, что способствует провисанию тканей в области нижней челюсти и формированию «бульдожьих щёк».

Биомеханические характеристики возрастных изменений

Височная область: снижение модуля упругости на 15-20% после 50 лет.

Скуловая область: уменьшение плотности коллагеновых волокон на 30-35% после 45 лет.


Щёчная область: увеличение растяжимости связочного аппарата на 25-30%, снижение фиксирующей способности.

Околоушно-жевательная область: ослабление связок на 20-25%, что приводит к изменению овала лица.

Обсуждение

Фибро-септальная сеть и связочный аппарат играют ключевую роль в сохранении структуры лица, их ослабление - основной механизм гравитационного птоза.

Соединительнотканный аппарат лица целесообразно рассматривать как целостную структуру и единый механизм, начиная с основного клеточного дифферона соединительной ткани и синтезируемые фибробластом соединительнотканные элементы, стадии созревания и формирования межклеточного матрикса, фибро-септальной сети, связочного аппарата, так и процессы резорбции вышеописанных структур и элементов.

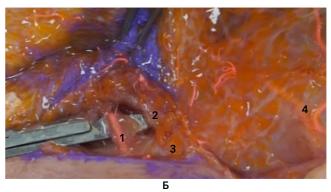


Рисунок 5. Фибро-септальная система и связочный аппарат щечной области. А. Ячеистая структура фибро-септальной системы щечной области. Б. 1. Подподбородочная артерия; 2. Мышца опускающая угол рта; 3. Нижнечелюстная связка; 4. Лицевая артерия

Figure 5. Fibro-septal system and ligamentous apparatus of the buccal region. **A.** Cellular structure of the fibro-septal system of the buccal region. **B.** 1. Submental artery; 2. Muscle that depresses the angles of the mouth; 3. Mandibular ligament; 4. Facial artery

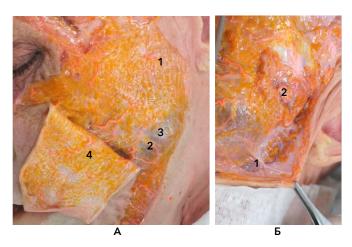


Рисунок 6. Фибро-септальная система и связочный аппарат околоушно-жевательной области. А. 1. Ячеистая структура фибросептальной системы щечной области; 2. Лицевая артерия; 3. Околоушно-жевательная фасция. Б. 1. Жевательная связка; 2. Околоушная слюнная железа

Figure 6. Fibro-septal system and ligamentous apparatus of the parotid-masticatory region. **A.** 1. Cellular structure of the fibro-septal system of the buccal region; 2. Facial artery; 3. Parotid-masticatory fascia. **B.** 1. Masticatory ligament; 2. Parotid salivary gland

Общие принципы соединительнотканного синтеза, описанные в следующих работах: Алексеева Н.Т. «Морфологическая характеристика регенераторных процессов в мягких тканях при использовании различных методов регионального воздействия»; Гелашвили П.П., Супильников А.А., Плохова В.А. «Кожа человека (анатомия, гистология, гистопатология); Шурыгина И.А.; Алексеева Н.Т. «Фибробласты и их роль в развитии соединительной ткани»; Алексеева Н.Т., Глухов А.А., Остроушко А.П. «Роль клеток фибробластического дифферона в процессе заживления ран»; «Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors»; Bella J., Hulmes D.J. «Fibrillar collagens»; Капулер О.М. «Метаболизм коллагеновых волокон на фоне возрастных изменений», идентичны и применимы не только к коже человека, но и для всех слоёв мягких тканей, обладающих соединительнотканным остовом.

Стоит отметить, что трофические нарушения мягких тканей, в том числе в концепции возрастных изменений, играют немаловажную роль в резорбции соединительнотканного остова мягких тканей лица, что было описано следующими авторами: «Effect of age and hypoxia on TGF-beta1 receptor expression and signal transduction in human dermal fibroblasts: impact on cell migration»; Юсова Ж.Ю. «Изменение микроциркуляторного русла и инволюционные изменения кожи»; «Decreased proportion of peripheral blood vascular endothelial growth factor expressing T and natural killer cells in preeclampsia»; Гунин А.Г. «Кровеносные сосуды в дерме человека в процессе старения».

Наличие основных удерживающих связок, описанных в работах: Иванов И.И., Петров П.П. «Связочный аппарат лица: анатомия и старение»; Sebastian Cotofana M.D. Ph.D. Ph.D. The Six Different Injection Techniques for the Temple Relevant for Soft Tissue Filler Augmentation Procedures - Clinical Anatomy and Danger Zones; Bryan C Mendelson., Steven R Jacobson. Surgical anatomy of the midcheek: facial layers, spaces, and the midcheek segments, было выделено и описано в ходе проведения диссекций на биоблоках.

При этом стоит отметить неоднозначность стабильности фибро-септальной системы гиподермы лица человека, что описано в работах Смирновой А.Б. «Фибро-септальная сеть и её роль в эстетической коррекции»; Козлова В.Н. «Биомеханика соединительной ткани лица», ввиду внешних и внутренних факторов, напрямую влияющих на развитие и резорбцию данных структур. При проведении исследования на биоблоках относительную стабильность плотности и однородности соединительно-тканного остова подкожно-жировой клетчатки лица человека показали лишь зоны лба, виска и околоушно-жевательная. Стоит отметить, абсолютное большинство биоблоков головы человека возрастом более 65 лет, с хроническими заболеваниями сердечно-сосудистой системы и неоперативными/оперативными методами коррекции мягких тканей, что закономерно приводило к различной оценке и описанию фибро-септальной сети подкожно-жировой клетчатки.

Согласно описанию Козлова В.Н. в работе «Биомеханика соединительной ткани лица», хроностарение выражено в динамических зонах (щёчная, скуловая) сильнее, чем в статических (височная, околоушно-жевательная).

Знание анатомо-физиологических особенностей позволяет определить причину изменения опорных

свойств связочного аппарата, однако требует учёта индивидуальных анатомических особенностей.

Заключение

Фибро-септальная сеть и связки обеспечивают фиксацию мягких тканей лица, их возрастная деградация ведёт к птозу.

Наибольшие возрастные изменения наблюдаются в динамических зонах - щёчной и скуловой областях.

Понимание строения и функционирования вышеописанных структур позволяют выявлять причины и последствия смещения мягких тканей лица и назначать наиболее эффективные методы коррекции.

Литература [References]

- 1 Иванов И.И., Петров П.П. Связочный аппарат лица: анатомия и старение. *Морфология*. 2015;2:45-53. Ivanov I.I., Petrov P.P. Ligamentous apparatus of the face: anatomy and aging. *Morphology*. 2015;2:45-53. (In Russ.)
- 2 Смирнова А.Б. Фибро-септальная сеть и её роль в эстетической коррекции. Дерматология и косметология. 2017;4:78-84. Smirnova A.B. Fibro-septal network and its role in aesthetic correction. Dermatology and cosmetology. 2017;4:78-84. (In Russ.)
- 3 Козлов В.Н. Биомеханика соединительной ткани лица. *Косметология и пластическая хирургия*. 2018;2:112-119. Kozlov V.N. Biomekhanika soedinitel'noy tkani litsa. *Kosmetologiya i plasticheskaya khirurgiya*. 2018;2:112-119. (In Russ.)
- 4 Sebastian Cotofana M.D. Ph.D. The Six Different Injection Techniques for the Temple Relevant for Soft Tissue Filler Augmentation Procedures Clinical Anatomy and Danger Zones. *JCD Jornal of Cosmetic Dermatology*. 2020;19:1570-1579.
- 5 Bryan C Mendelson., Steven R Jacobson. Surgical anatomy of the midcheek: facial layers, spaces, and the midcheek segments. *Clinics in plastic surgery*. 2008:395-404.
- 6 Shkarubo MA, Dobrovol'skiy GF, Polev GA, Shkarubo AN, Tarkhnishvili GS, Spitsyna LI, Karnaukhov VV, Bykanov AE. A technique of manufacturing anatomical preparations of the human brain based on injecting vessels with colored silicone (a technical note). Zhurnal voprosy neirokhirurgii im. N.N. Burdenko. 2018;82(2):59-64. (In Russ.)
- 7 Yousset AS, Ahmadian A, Ramos E, Vale F, van Loveren HR. Combined subgaleal/myocutaneous technique for temporalis muscle dissection. J Neurol Surg. 2012;73(6):387-393.
- 8 Tatarli N, Turan Suslu H, Ceylan D, Aşkın Şeker, Hakan Karabağli, Ender Koktekir, Selcuk Ozdoğan, Tufan Hicdonmez. Vascular Silicone Injection of Fresh Cadaveric Cow Cranium: Alternative Training Model For The Human Brain. *J Neurol Science*. 2015;32(1):016-022.
- 9 Алексеева Н.Т., Глухов А.А., Остроушко А.П. Морфологическая характеристика регенераторных процессов в мягких тканях при использовании различных методов регионального воздействия. *Морфология*. 2010;137(4):15. 9 Alekseeva N.T., Glukhov A.A., Ostroushko A.P. Morphological characteristics of regenerative processes in soft tissues using various methods of regional impact. *Morphology*. 2010;137(4):15. (In Russ.)
- 10 Гелашвили П.П., Супильников А.А., Плохова В.А. Кожа человека (анатомия, гистология, гистопатология). Самара: Медицинский институт «Peaвus», 2013:168. Gelashvili P.P., Supil'nikov A.A., Plokhova V.A. Kozha cheloveka (anatomiya, gistologiya, gistopatologiya). Samara: Meditsinskiy institut «Reaviz», 2013:168. (In Russ.)
- 11 Швецова Е.В. [и др. Контрактильная способность фибробластов различного происхождения в модели живого эквивалента дермы. Известия Российской академии наук. Серия биологическая. 2008;2:169-173. 11 Shvetsova E.V. [i dr. Kontraktil'naya sposobnost' fibroblastov razlichnogo proiskhozhdeniya v modeli zhivogo ekvivalenta dermy. *Izvestiya Rossiyskoy akademii nauk. Seriya biologicheskaya*. 2008;2:169-173. (In Russ.)
- 12 Dugina V. et al. Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors. *Journal of Cell Science*. 2001;114:3285-3296.
- 13 Li B., Wang J.H. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. *Journal of Tissue Viability*. 2011;20(4):108-120.
- 14 Кутукова Н.А., Назаров П.Г. Тучные клетки: роль в воспалении, восстановлении тканей и развитии фиброза. *Цитокины и воспаление*. 2014;13(4):11-20. Kutukova N.A., Nazarov P.G. Mast cells: a role in inflammation, tissue repair and fibrosis. *Cytokines and Inflammation*. 2014;13(4):11-20. (In Russ.)
- 15 Numata Y. et al. The accelerating effect of histamine on the cutaneous wound-healing process through the action of basic fibroblast growth factor. *Journal of Investigative Dermatology.* 2006;126(6):1403–1409.
- 16 Шурыгина И.А. и др. Фибробласты и их роль в развитии соединительной ткани. Сибирский медицинский журнал. 2012;3:8-12. Shurygina I.A. et al. Fibroblasts and their role in the development of connective tissue. Siberian Medical Journal. 2012;3:8-12. (In Russ.)
- 17 Омельяненко Н.П., Слуцкий Л.И. Соединительная ткань (гистофизиология и биохимия): монография. М.: Известия, 2009:380. Omel'yanenko N.P., Slutskiy L.I. Soedinitel'naya tkan' (gistofiziologiya i biokhimiya): monografiya. М.: Izvestiya, 2009:380. (In Russ.)
- 18 Алексеева Н., Глухов А., Остроушко А. Роль клеток фибробластического дифферона в процессе заживления ран. Вестник экспериментальной и клинической хирургии. 2012;5(3):601-608. Alekseeva N., Glukhov A., Ostroushko A. The role of fibroblastic cells differona in the process of wound healing. Journal of Experimental and Clinical Surgery. 2012;5(3):601-608. (In Russ.) https://doi.org/10.18499/2070-478X-2012-5-3-601-608
- 19 Быков В.Л. Цитология и общая гистология. СПб.: Сотис, 2007:254. Bykov V.L. Tsitologiya i obshchaya gistologiya. SPb.: Sotis, 2007:254. (In Russ.)

- 20 Штыркова Е.В. Фибробласты дермы. Источники дифференцировки, пролиферативная активность и методы ее стимуляции. В Вестник медицинского института «PEABU3»: Реабилитация, Врач и Здоровье. 2017;6(30):42-49. Shtyrkova E.V. Fibroblasty dermy. Istochniki differentsirovki, proliferativnaya aktivnost' i metody ee stimulyatsii. Bulletin of the Medical Institute "REAVIZ": Rehabilitation, Doctor and Health. 2017;6(30):42-49. (In Russ.)
- 21 Mogford J.E. et al. Effect of age and hypoxia on TGF-beta1 receptor expression and signal transduction in human dermal fibroblasts: impact on cell migration. *Journal of Cellular Physiology*. 2002;190:259-265.
- 22 Michopoulou A., Rousselle P. How do epidermal matrix metalloproteinases support reepithelialization during skin healing? *Journal of the European Academy of Dermatology and Venereology*. 2015; 25; (Suppl. 1):33-42.
- 23 Smith P. Role of myofibroblasts in normal and pathological periodontal wound healing. Oral Diseases. 2018;24 (1-2):26-29.
- 24 Иванова В.П., Кравченко А.И. Современный взгляд на строение и эволюцию коллагенов. Фибриллярные коллагены. Журнал эволюционной биохимии и физиологии. 2012;48(2):118-128. Ivanova V.P., Kravchenko A.I. Modern view on the structure and evolution of collagens. Fibrillar collagens. Journal of Evolutionary Biochemistry and Physiology. 2012;48(2):118-128. (In Russ.)
- 25 Bella J., Hulmes D.J. Fibrillar collagens. Sub-cellular biochemistry. 2017;82:457-490.
- 26 Долгушин И.И., Савочкина А.Ю. Секреторные функции нейтрофилов. Аллергология и иммунология. 2015; 2(16):209-212. Dolgushin I.I., Savochkina A.Yu. Sekretornye funktsii neytrofilov. Allergologiya i immunologiya. 2015; 2(16):209-212. (In Russ.)
- 27 Миронов В.И., И.И. Гилева Раневой процесс: современные аспекты патогенеза. Сибирский медицинский журнал. 2009; 6:20-25. Mironov V.I., I.I. Gileva Ranevoy protsess: sovremennye aspekty patogeneza. Sibirskiy meditsinskiy zhurnal. 2009; 6:20-25. (In Russ.)
- 28 Юсова Ж.Ю., Баранов В.Н., Потекаев Н.Н. Изменение микроциркуляторного русла и инволюционные изменения кожи. Эстетическая медицина. 2010;9(4):423-428. Yusova Zh.Yu., Baranov V.N., Potekaev N.N. Izmenenie mikrotsirkulyatornogo rusla i involyutsionnye izmeneniya kozhi. Este-ticheskaya meditsina. 2010;9(4):423-428. (In Russ.)
- 29 Minutti C.M. et al. Tissue-specific contribution of macrophages to wound healing. Seminars in Cell and Developmental Biology. 2017;61: 3-11.
- 30 Shen T. Exogenous growth factors enhance the expression of cola1, cola3, and Elastin in fibroblasts via activating MAPK signaling pathway. Molecular and Cellular Biochemistry. 2018;442(1-2):203-210.
- 31 Urri D.W. et al. Elastin: a representative ideal protein elastomer. *Philosophical Transactions of the Royal Society B: Biological Sciences*. 2002;357(1418):109-126.
- 32 Shin J.W. et al. Molecular Mechanisms of Dermal Aging and Antiaging Approaches. *International Journal of Molecular Sciences*. 2019;20(9): 2126
- 33 Трубицын А.А. Объединенная теория старения. Успехи геронтологии. 2012;4:563-581. Trubitsyn A.A. Ob"edinennaya teoriya stareniya. Uspekhi gerontologii. 2012;4:563-581. (In Russ.)
- 34 Lucas T. et al. Differential roles of macrophages in diverse phases of skin repair. Journal of Immunology. 2010;184:3964-3977.
- 35 Капулер О.М., Сельская Б.Н., Галеева А.Г. Метаболизм коллагеновых волокон на фоне возрастных изменений. *Врач.* 2015;8:64-69. Kapuler O.M., Sel'skaya B.N., Galeeva A.G. Metabolism of collagen fibers in the presence of age-related changes. *Doctor.* 2015;8:64-69. (In Russ.)
- 36 Целуйко С.С. и др. Морфофункциональная характеристика дермы кожи и ее изменения при старении (обзор литературы). Бюллетень физиологии и патологии дыхания. 2016;60:111-116. Tseluyko S.S., Maliuk E.A., Korneeva L.S., Krasavina N.P. Morphofunctional parameters of skin dermis and its changes during aging (review). Bulletin Physiology and Pathology of Respiration. 2016;(60):111-116. (In Russ.) https://doi.org/10.12737/20130
- 37 Newton V.L. et al. Skin aging: molecular pathology, dermal remodelling and the imaging revolution. *Giornale Italiano di Dermatologia e Venereologia*. 2015;150 (6):665-674.
- 38 Knoop M., Lünstedt B., Thiede A. Maxon und PDS-Bewertung physikalischer und biologischer Eigenschaften monofiler, absorbierbarer Nahtmaterialien. *Langenbecks Archiv für Chirurgie*. 1987;371 (1):13-28.
- 39 Molvarec A. et al. Decreased proportion of peripheral blood vascular endothelial growth factor- expressing T and natural killer cells in preeclampsia. *American Journal of Obstetrics and Gynecology.* 2010;203(6):P. 567.e1.
- 40 Quan T., Fisher G.J. Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: a mini review. *Gerontology*. 2015; 61 (5):427-34.
- 41 Гунин А.Г., Петров В.В., Васильева О.В., Голубцова Н.Н. Кровеносные сосуды в дерме человека в процессе старения. Успехи геронтологии. 2014;27(1):54-61. Gunin A.G., Petrov V.V., Vasil'eva O.V., Golubtsova N.N. Krovenosnye sosudy v derme cheloveka v protsesse stareniya. Uspekhi gerontologii. 2014;27(1):54-61. (In Russ.)
- 42 Мантурова Н.Е., Городилов Р.В., Кононов А.В. Старение кожи: механизмы формирования и структурные изменения. Анналы пластической, реконструктивной и эстетической хирургии. 2010;1:88-92. Manturova N.E., Gorodilov R.V., Kononov A.V. Skin aging: mechanisms of formation and structural changes. Annals of Plastic, Reconstructive, and Aesthetic Surgery. 2010;1:88-92. (In Russ.)
- 43 Khavkin J., Ellis D.A. Aging skin: histology, physiology and pathology. Facial Plastic Surgery Clinics of North America. 2011;19 (2):229-234.
- 44 Rivard A. Age-dependent impairment of angiogenesis. Circulation. 1999;99:111-120.
- 45 Sgonc R., Gruber J. Age-Related Aspects of Cutaneous Wound Healing: A Mini Review. Gerontology. 2013;59:159-164.
- 46 Gosain A., DiPietro L.A. Gosain, A. Aiging and wound healing. World Journal of Surgery. 2004 Mar;28(3):321-326.
- 47 Swift M.E. et al. Age-related alterations in the inflammatory response to dermal injury. *Journal of Investigative Dermatology*. 2001;117:1027-1035.
- 48 Chang E.I. et al. Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor 1-alpha stabilization during ischemia. *Circulation*. 2007;116:2818-2829.
- 49 Кутукова Н.А., Назаров П.Г., Кудрявцева Г.В., Шишкин В.И. Тучные клетки и старение. Успехи геронтологии. 2016;29(4):586-593. Kutukova N.A., Nazarov P.G., Kudryavtseva G.V., Shishkin V.I. Tuchnye kletki i starenie. Uspekhi gerontologii. 2016;29(4):586-593. (In Russ.)
- 50 Murota H. et al. Emedastine difumarate inhibits histamine-induced collagen synthesis in dermal fibroblasts. *Journal of Investigational Allergology and Clinical Immunology*. 2008;18(4):245-452.
- 51 Montier Y., Lorentz A., Krämer S. Central role of IL-6 and MMP-1 for cross talk between human intestinal mast cells and human intestinal fibroblasts. *Immunobiology*. 2012;217(9):912-929.
- 52 Ashcroft G.H., Mills S.J., Ashworth J.J. Ageing and wound healing. Biogerontology. 2002;3(6):337-345.

Авторская справка

Можейко Георгий Владимирович

Аспирант, кафедра морфологии и патологии, Медицинский университет «Реавиз».

mozjeyko@mail.ru

Вклад автора: поиск и анализ литературы, систематизация данных, подготовка рукописи.

Супильников Алексей Александрович

Канд. мед. наук, доцент, заместитель директора Института анатомии и морфологии имени академика Ю.М. Лопухина, Российский национальный исследовательский медицинский университет им. Н.И. Пирогова; первый проректор по научной деятельности, Медицинский университет «Реавиз».

ORCID 0000-0002-1350-0704; a.a.supilnikov@reaviz.online Вклад автора: концепция и дизайн исследования, анализ литературы, редактирование текста статьи.

Author's reference

Georgiy V. Mozheyko

Postgraduate Student, Department of Morphology and Pathology, Medical University "Reaviz".

mozjeyko@mail.ru

Author's contributions: literature search and analysis, data systematization, manuscript preparation.

Aleksey A. Supilnikov

Cand. Sci. (Med.), Docent, Deputy Director of the Director of the Lopukhin Institute of Anatomy and Morphology, N.I. Pirogov Russian National Research Medical University; First Vicerector for Scientific Activity, Medical University "Reaviz".

ORCID 0000-0002-1350-0704; a.a.supilnikov@reaviz.online Author contribution: study concept and design, literature review, editing of the article text.