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Резюме. Верхнечелюстная артерия характеризуется значительной анатомической вариабельностью, что создаёт существенные труд-
ности при планировании хирургических вмешательств в челюстно-лицевой области. Традиционные методы предоперационной визуа-
лизации требуют значительных временных затрат на интерпретацию данных и зависят от квалификации специалиста. Накопление 
больших массивов медицинских изображений в формате DICOM создаёт предпосылки для применения методов машинного обучения 
и глубоких нейронных сетей для автоматизации анализа сосудистых структур. Настоящая работа представляет концептуальное обос-
нование возможности применения технологий искусственного интеллекта для выявления анатомических вариаций верхнечелюстной 
артерии на основании анализа данных компьютерной и конусно-лучевой томографии. Проведён анализ современного состояния при-
менения алгоритмов глубокого обучения в медицинской визуализации сосудистых структур головы и шеи, систематизированы извест-
ные анатомические вариации верхнечелюстной артерии и их клиническая значимость, сформулированы технические требования к 
архитектуре потенциальной системы автоматизированного анализа. Предлагаемый концептуальный подход включает использование 
сверточных нейронных сетей для семантической сегментации сосудистой сети, алгоритмов трёхмерной реконструкции для визуализа-
ции топографических взаимоотношений и системы классификации выявленных вариантов строения по степени хирургического риска. 
Обосновывается необходимость создания специализированной обучающей выборки аннотированных изображений верхнечелюстной 
артерии для обеспечения высокой точности распознавания. Обсуждаются потенциальные преимущества автоматизированного анали-
за, включая стандартизацию диагностических подходов, снижение времени предоперационного планирования и минимизацию интра-
операционных осложнений, связанных с повреждением сосудов. Признаются существующие технические и организационные ограни-
чения внедрения подобных систем, включая необходимость валидации на больших клинических когортах и интеграции в существую-
щие медицинские информационные системы. 
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Abstract. The maxillary artery demonstrates considerable anatomical variability, creating substantial challenges in preoperative planning for 
maxillofacial surgical interventions. Traditional preoperative imaging methods require significant time for data interpretation and depend heavily 
on specialist expertise. The accumulation of large DICOM medical image datasets creates prerequisites for applying machine learning methods 
and deep neural networks to automate vascular structure analysis. This work presents a conceptual rationale for applying artificial intelligence 
technologies to identify anatomical variations of the maxillary artery based on computed tomography and cone-beam computed tomography 
data analysis. We analyze the current state of deep learning algorithm applications in medical visualization of head and neck vascular structures, 
systematize known anatomical variations of the maxillary artery and their clinical significance, and formulate technical requirements for potential 
automated analysis system architecture. The proposed conceptual approach includes using convolutional neural networks for semantic segmen-
tation of the vascular network, three-dimensional reconstruction algorithms for visualizing topographic relationships, and a classification system 
for identified structural variants by surgical risk degree. We substantiate the necessity of creating a specialized training dataset of annotated 
maxillary artery images to ensure high recognition accuracy. We discuss potential advantages of automated analysis, including standardization 
of diagnostic approaches, reduction of preoperative planning time, and minimization of intraoperative complications related to vascular injury. 
We acknowledge existing technical and organizational limitations of implementing such systems, including the need for validation on large clini-
cal cohorts and integration into existing medical information systems. 
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Введение 
Анатомическая проблема: вариабельность  
как вызов хирургической безопасности 
Верхнечелюстная артерия (a. maxillaris) занимает 

центральное место в васкуляризации глубоких 
структур лица, обеспечивая кровоснабжение зу-
бов, околоносовых пазух, жевательных мышц, 
твёрдого и мягкого нёба [1, 2]. Как конечная ветвь 
наружной сонной артерии, она демонстрирует 
сложную трёхмерную топографию, проходя через 
подвисочную и крылонебную ямки с образованием 
многочисленных ветвей переменной конфигурации 
[3, 4]. 

Фундаментальной особенностью этого сосуда 
является его выраженная индивидуальная измен-
чивость. Классические анатомические исследова-
ния документируют частоту атипичных вариантов 
от 8% до 15% в общей популяции [5, 6], однако со-
временные методы визуализации с высоким раз-
решением выявляют анатомические девиации зна-
чительно чаще — до 23–28% случаев при целена-
правленном анализе [7, 8]. Вариации включают 
аномальное начало артерии от других ветвей 
наружной сонной системы, нетипичное прохожде-
ние через височную мышцу, изменённое ветвление 
в крылонёбной ямке, фенестрацию сосудистой 
стенки и необычное расположение задней верхней 

альвеолярной артерии относительно дна верхне-
челюстной пазухи [9–12]. 

Клиническое значение этой вариабельности ста-
новится критическим в контексте современной че-
люстно-лицевой хирургии. Синус-лифтинг при ден-
тальной имплантации, эндоскопические вмешатель-
ства на околоносовых пазухах, резекции верхней 
челюсти при онкологических заболеваниях, микро-
хирургическая реконструкция дефектов лица — все 
эти операции несут риск повреждения верхнече-
люстной артерии или её ветвей [13–16]. Ятрогенное 
повреждение сосуда может приводить к массив-
ному интраоперационному кровотечению, форми-
рованию гематом, артериовенозным фистулам, 
тромбозу с развитием ишемии тканей и в исключи-
тельных случаях — к эмболии в систему внутренней 
сонной артерии с развитием церебрального ин-
фаркта [17, 18]. 

Ограничения современных методов визуализации 
Предоперационная оценка анатомии верхнече-

люстной артерии традиционно основывается на 
данных компьютерной томографии (КТ), конусно-
лучевой компьютерной томографии (КЛКТ) и в от-
дельных случаях — КТ-ангиографии или магнитно-
резонансной ангиографии [19, 20]. Хотя эти методы 
обеспечивают детальную визуализацию костных 
структур и мягких тканей, интерпретация положе-
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ния сосудов в трёхмерном пространстве остаётся 
нетривиальной задачей [21]. 

Основные ограничения существующих подхо-
дов включают: 

1. Субъективность интерпретации. Выявление 
сосудистых структур на нативных КТ-изображениях 
требует высокой квалификации рентгенолога и 
значительного опыта в анатомии челюстно-
лицевой области. Inter-observer variability в опреде-
лении положения задней верхней альвеолярной 
артерии, по данным различных исследований, до-
стигает 15–22% [22, 23].  

2. Временные затраты. Детальный анализ топо-
графии сосудистой сети в области крылонебной 
ямки с построением трёхмерных реконструкций 
может занимать от 20 до 45 минут в зависимости от 
используемого программного обеспечения и 
сложности анатомии конкретного пациента [24].  

3. Вариабельность протоколов. Отсутствие 
стандартизированных подходов к предоперацион-
ной оценке сосудистой анатомии приводит к раз-
личиям в клинической практике между учреждени-
ями и специалистами [25].  

4. Ограниченная доступность КТ-ангиографии. 
Несмотря на то, что КТ-ангиография обеспечивает 
прямую визуализацию сосудов, её рутинное при-
менение ограничивается дополнительным облуче-
нием пациента, необходимостью внутривенного 
контрастирования и экономическими факторами 
[26].  

Технологический контекст: искусственный 
интеллект в медицинской визуализации 
Последнее десятилетие ознаменовалось рево-

люцией в области анализа медицинских изображе-
ний, обусловленной развитием методов глубокого 
обучения (deep learning) и доступностью больших 
вычислительных мощностей [27, 28]. Сверточные 
нейронные сети (convolutional neural networks, 
CNN) продемонстрировали способность превос-
ходить производительность человека-эксперта в 
задачах классификации патологии на рентгено-
граммах, КТ и МРТ-изображениях [29, 30]. 

В области анализа сосудистых структур алго-
ритмы глубокого обучения показали впечатляю-
щие результаты. Системы автоматической сегмен-
тации коронарных артерий на КТ-ангиограммах 
достигают точности (Dice coefficient) 0,87–0,92, что 
сопоставимо с межэкспертной согласованностью 
[31, 32]. Аналогичные подходы успешно применя-
ются для анализа церебральных сосудов, аорты, 
лёгочных артерий и периферических сосудов ко-
нечностей [33–36]. 

Принципиальное преимущество методов ма-
шинного обучения заключается в способности к 
обучению на больших массивах данных с последу-

ющим обобщением выявленных закономерностей 
на новые клинические случаи. В отличие от тради-
ционных алгоритмов обработки изображений, ос-
нованных на заранее заданных правилах, нейрон-
ные сети способны «обнаруживать» сложные пат-
терны и взаимосвязи, не очевидные для человече-
ского восприятия [37, 38]. 

Пробел в существующих исследованиях 
Несмотря на широкое применение технологий 

искусственного интеллекта в кардиологической, 
нейроваскулярной и общей радиологической 
практике, анализ сосудистых структур челюстно-
лицевой области остаётся недостаточно изученным 
направлением. Систематический поиск в базах 
данных PubMed, Scopus и Web of Science (период 
2015–2024 гг., ключевые слова: "artificial 
intelligence", "deep learning", "maxillary artery", "cone 
beam CT", "facial vasculature") выявляет крайне 
ограниченное количество публикаций, специфиче-
ски посвящённых применению методов машинного 
обучения для анализа верхнечелюстной артерии 
[39]. 

Aboelmaaty и соавт. (2024) представили одно из 
немногих исследований, где алгоритм глубокого 
обучения применялся для автоматического выяв-
ления задней верхней альвеолярной артерии на 
КЛКТ-изображениях [40]. Авторы использовали ар-
хитектуру U-Net для сегментации сосуда и проде-
монстрировали чувствительность 89,4% и специ-
фичность 91,2% при валидации на выборке из 312 
случаев. Однако исследование ограничивалось 
только одной ветвью верхнечелюстной артерии и 
не учитывало её основной ствол и другие клиниче-
ски значимые ветви. 

Oz и соавт. (2022) применили трёхмерную рота-
ционную ангиографию для детальной визуализа-
ции топографии верхнечелюстной и нисходящей 
небной артерий в крылонебной ямке [41]. Хотя их 
работа не включала методы машинного обучения, 
она продемонстрировала техническую осуществи-
мость получения высококачественных изображе-
ний сосудистой сети с разрешением, достаточным 
для обучения нейронных сетей. 

Yeung и соавт. (2022) в обзоре, посвящённом 
применению КЛКТ для оценки патологии верхне-
челюстной пазухи, отметили потенциал технологий 
автоматизированного анализа для выявления ана-
томических вариантов, но констатировали отсут-
ствие валидированных алгоритмов для клиниче-
ского применения [42]. 

Таким образом, существует явный пробел меж-
ду высоким уровнем развития методов искусствен-
ного интеллекта для анализа сосудистых структур в 
других анатомических областях и практически пол-
ным отсутствием подобных решений для верхне-
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челюстной артерии. Этот пробел создаёт как науч-
ную проблему, так и клиническую потребность в 
разработке специализированных подходов. 

 
Цель настоящей работы 
Настоящее исследование ставит своей целью 

представить концептуальное обоснование приме-
нения технологий искусственного интеллекта для 
автоматизированного анализа анатомии верхнече-
люстной артерии на основании данных КТ и КЛКТ. 
Работа структурирована следующим образом: 

1. Систематизация известных анатомических 
вариаций верхнечелюстной артерии и их клиниче-
ской значимости.  

2. Анализ современного состояния применения 
методов глубокого обучения в медицинской визуа-
лизации сосудистых структур.  

3. Формулирование технических требований к 
архитектуре системы автоматизированного анализа.  

4. Описание концептуальной модели алгоритма 
с обоснованием выбора методологических подхо-
дов.  

5. Обсуждение потенциальных преимуществ, 
ограничений и направлений дальнейших исследо-
ваний.  

Важно подчеркнуть, что настоящая работа носит 
концептуальный характер и представляет обосно-
вание возможности и целесообразности разработ-
ки подобных систем, а не описание готового техни-

ческого решения. Мы стремимся определить науч-
но обоснованную траекторию для будущих иссле-
довательских и инженерных усилий в этом направ-
лении. 

 
АНАТОМИЧЕСКАЯ ОСНОВА: ВАРИАБЕЛЬНОСТЬ 
ВЕРХНЕЧЕЛЮСТНОЙ АРТЕРИИ 
Нормальная анатомия и источники  
вариабельности 
Верхнечелюстная артерия отходит от наружной 

сонной артерии на уровне шейки нижней челюсти, 
обычно позади ветви нижней челюсти, и направля-
ется кпереди и медиально [1]. Классическое описа-
ние её хода разделяет артерию на три сегмента: 
нижнечелюстной (или мандибулярный), крыловид-
ный (или мышечный) и крылонебный (или верхне-
челюстной) [2, 3]. 

Нижнечелюстной сегмент проходит между 
шейкой нижней челюсти и клиновидно-
нижнечелюстной связкой, отдавая глубокую уш-
ную, переднюю барабанную, среднюю менинге-
альную и нижнюю альвеолярную артерии. Уже на 
этом уровне возможны значительные вариации: 
средняя менингеальная артерия может отходить 
непосредственно от наружной сонной артерии  
(3–5% случаев), а нижняя альвеолярная артерия 
иногда берет начало от поверхностной височной 
артерии [43, 44]. 

 

 
 

Рисунок 1. Ветви верхнечелюстной артерии (по Netter, с изменениями) 
Figure 1. Branches of the maxillary artery 
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Крыловидный сегмент располагается в подви-
сочной ямке в непосредственной близости от ла-
теральной крыловидной мышцы. Классически опи-
сываются два варианта прохождения: поверхност-
ный (латеральнее нижней головки латеральной 
крыловидной мышцы) и глубокий (медиальнее или 
между двумя головками мышцы). Соотношение 
этих вариантов варьирует в различных популяциях: 
в европейских выборках поверхностный ход отме-
чается в 55–65% случаев, глубокий — в 35–45% [45, 
46]. В крыловидном сегменте отходят мышечные 
ветви (жевательная, височные, крыловидные, щеч-
ная артерии), конфигурация которых также вариа-
бельна. 

 

Крылонебный сегмент входит в крылонебную 
ямку через крыловерхнечелюстную щель, где ар-
терия разделяется на свои конечные ветви: зад-
нюю верхнюю альвеолярную, подглазничную, нис-
ходящую нёбную, артерию крыловидного канала и 
клиновидно-нёбную артерии [3, 47]. Именно в этом 
сегменте клиническая значимость анатомических 
вариаций наиболее велика, поскольку крылонеб-
ная ямка служит «хирургическими воротами» при 
эндоскопических вмешательствах на основании 
черепа и латеральной стенке носа [48]. 

Систематизация клинически значимых вариантов 
Анализ анатомической и клинической литерату-

ры позволяет систематизировать основные типы 
вариаций верхнечелюстной артерии, имеющие хи-
рургическое значение (табл. 1). 

 
Таблица 1. Систематизация анатомических вариаций верхнечелюстной артерии с клиническими импликациями 
Table 1. Systematization of anatomical variations of the maxillary artery with clinical implications 

Тип вариации Анатомическая  
локализация 

Частота  
встречаемости 

Клиническая значимость Источники 

Аномальное начало Устье артерии 2–4% 
Может приводить к ошибкам интерпретации ангио-
графии; требует модификации хирургического доступа 

[43, 44] 

Проникновение через 
височную мышцу 

Крыловидный 
сегмент 

1–3% (редкий 
вариант) 

Высокий риск повреждения при операциях на височ-
но-нижнечелюстном суставе; трудности при латераль-
ном доступе к подвисочной ямке 

[49, 50] 

Фенестрация Любой сегмент <1% (казуистика) 
Образование двойного просвета с последующим сли-
янием; повышенный риск травмы при минимально 
инвазивных вмешательствах 

[51] 

Задняя верхняя  
альвеолярная артерия в 
нетипичном положении 

Дно верхнече-
люстной пазухи 

8–23%  
(по данным 

КЛКТ) 

Критический фактор риска при синус-лифтинге; причина 
интраоперационного кровотечения в 3–7% случаев 

[7, 8, 52, 
53] 

Аномальное ветвление 
в крылонебной ямке 

Крылонебный 
сегмент 

12–18% 
Нетипичное расположение нисходящей небной арте-
рии может осложнить доступ через большое небное 
отверстие 

[41, 54] 

Измененный ход  
при патологических 
процессах 

Любой сегмент 
Вариабельно  
в зависимости  
от патологии 

Опухоли, воспаление, травмы вызывают смещение, 
удлинение или компрессию артерии; затрудняет хи-
рургический доступ 

[55, 56] 

 
Особого внимания заслуживает положение зад-

ней верхней альвеолярной артерии (a. alveolaris 
superior posterior) относительно дна верхнечелюст-
ной пазухи. Эта ветвь может проходить в толще 
слизистой оболочки пазухи (интрасинусально), в 
костной стенке (интрабонально) или под надкост-
ницей (субпериостально) [52]. При синус-лифтинге — 
процедуре элевации дна верхнечелюстной пазухи 
для установки дентальных имплантатов — повре-
ждение этого сосуда является одним из наиболее 
частых осложнений [53]. 

Современные исследования с использованием 
КЛКТ показывают, что диаметр задней верхней 
альвеолярной артерии варьирует от 0,5 до 2,4 мм 
(среднее значение 1,2 ± 0,4 мм), а расстояние от 
альвеолярного гребня до сосуда — от 14 до 24 мм 
[57, 58]. Артерия диаметром более 1,5 мм, распо-
ложенная менее чем в 15 мм от альвеолярного 
гребня, считается значимым фактором риска кро-
вотечения [59]. 

Гистологические особенности  
и патофизиологические соображения 
Верхнечелюстная артерия является типичным 

представителем артерий мышечного типа средне-
го калибра. Её стенка состоит из трёх оболочек — 
интимы, медии и адвентиции — с хорошо развитой 
мышечной составляющей, обеспечивающей актив-
ную регуляцию кровотока [60]. 

Интима образована эндотелием, базальной 
мембраной и тонким подэндотелиальным слоем. 
Эндотелиальные клетки выполняют не только ба-
рьерную функцию, но и играют ключевую роль в 
регуляции гемостаза, тонуса сосудов и локального 
воспаления. При атеросклеротическом поражении, 
которое может развиваться в верхнечелюстной 
артерии у пожилых пациентов и лиц с метаболиче-
скими нарушениями, происходит утолщение инти-
мы с формированием атеросклеротических бля-
шек [61]. 
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Медия представлена 15–30 слоями циркулярно 
ориентированных гладкомышечных клеток, между 
которыми располагаются эластические и коллагено-
вые волокна. Соотношение мышечных и эластических 
элементов определяет механические свойства сосуда 
и его способность к вазодилатации/вазоконстрикции в 
ответ на метаболические стимулы [62]. 

Адвентиция образована рыхлой соединитель-
ной тканью с продольно ориентированными колла-
геновыми волокнами. В этом слое проходят vasa 
vasorum (сосуды сосудов), обеспечивающие трофи-
ку стенки артерии, и нервные волокна, участвую-
щие в вазомоторной регуляции [60]. 

С точки зрения потенциального применения 
технологий искусственного интеллекта, важно по-
нимать, что визуализация верхнечелюстной арте-
рии на нативных КТ-изображениях основана на 
различии рентгеновской плотности крови в про-
свете сосуда и окружающих мягких тканей. При на-
тивной КТ этот контраст минимален (разница плот-
ности около 5–15 единиц Хаунсфилда), что создаёт 
технические трудности для автоматической сег-
ментации без контрастного усиления [63]. При КТ-
ангиографии контрастированная кровь имеет 
плотность 200–400 HU, что значительно облегчает 
задачу идентификации сосуда, но требует инвазив-
ной процедуры [26]. 

На КЛКТ-изображениях, широко используемых в 
дентальной практике, мягкотканный контраст ещё 
более ограничен в силу специфики детекторной 
системы. Тем не менее, при высоком разрешении и 
правильно подобранных параметрах сканирования 
возможна визуализация костных каналов, в кото-
рых проходят сосуды, что позволяет косвенно оце-
нить их топографию [64, 65]. 

 
Клиническая значимость вариабельности 
Неучёт анатомических вариаций верхнечелюст-

ной артерии может приводить к серьёзным интра-
операционным осложнениям. 

При дентальной имплантации и синус-лифтинге 
повреждение задней верхней альвеолярной арте-
рии отмечается в 3,2–7,1% случаев [66, 67]. Крово-
течение обычно контролируется местными гемо-
статическими средствами, однако в редких случаях 
требует прекращения операции и даже формиро-
вания гематомы пазухи с необходимостью ревизи-
онного вмешательства [68]. 

При эндоскопических операциях на околоносо-
вых пазухах повреждение клиновидно-нёбной или 
нисходящей нёбной артерий в крылонёбной ямке 
может приводить к массивному кровотечению, тре-
бующему эндоваскулярной эмболизации [69, 70]. 
Частота таких осложнений составляет 0,5–1,5% при 
эндоскопической хирургии основания черепа [71]. 

При резекциях верхней челюсти по поводу зло-
качественных новообразований знание топогра-
фии верхнечелюстной артерии критически важно 
для планирования объёма резекции и сохранения 
адекватной васкуляризации окружающих тканей 
[72]. В случаях реконструкции дефектов васкуляри-
зированными лоскутами верхнечелюстная артерия 
может использоваться как реципиентный сосуд для 
микрохирургического анастомоза [73]. 

Неврологические осложнения могут возникать 
при проникновении эмбола из повреждённой 
верхнечелюстной артерии в систему внутренней 
сонной через анастомозы между наружной и внут-
ренней сонными системами (например, через ар-
терию крыловидного канала и офтальмическую 
артерию). Описаны случаи инфаркта головного 
мозга после стоматологических процедур, хотя это 
исключительно редкое осложнение [74, 75]. 

Таким образом, точная предоперационная 
оценка анатомии верхнечелюстной артерии имеет 
непосредственное клиническое значение для ми-
нимизации хирургических рисков. Существующие 
методы визуализации обеспечивают необходимые 
данные, но их интерпретация остаётся субъектив-
ной и трудоёмкой задачей, что создаёт предпосыл-
ки для применения технологий автоматизирован-
ного анализа. 

 
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ  
В МЕДИЦИНСКОЙ ВИЗУАЛИЗАЦИИ: 
СОВРЕМЕННОЕ СОСТОЯНИЕ 
Технологический фундамент:  
глубокое обучение для анализа изображений 
Современные системы автоматизированного 

анализа медицинских изображений базируются 
преимущественно на методологии глубокого обу-
чения — подклассе машинного обучения, использу-
ющем многослойные нейронные сети для извлече-
ния иерархических представлений данных [76, 77]. 

Сверточные нейронные сети (CNN) стали стан-
дартом де-факто для задач компьютерного зрения 
в медицине. Фундаментальное преимущество CNN 
заключается в способности автоматически обу-
чаться распознаванию релевантных признаков 
изображений без необходимости их ручного про-
ектирования [78]. Архитектуры типа ResNet, 
DenseNet, EfficientNet демонстрируют производи-
тельность, превосходящую человека-эксперта, в 
задачах классификации патологии на рентгено-
граммах, дерматоскопических изображениях, ги-
стологических препаратах [29, 79, 80]. 

Для задач семантической сегментации — выде-
ления областей интереса на изображениях с пик-
сельной точностью — разработаны специализиро-
ванные архитектуры. U-Net, предложенная 
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Ronneberger и соавт. (2015), стала каноническим 
решением в медицинской визуализации благодаря 
своей способности обучаться на относительно не-
больших датасетах и обеспечивать высокую точ-
ность сегментации [81]. Последующие развития 
этой архитектуры — 3D U-Net, nnU-Net, U-Net++, 
Attention U-Net — улучшили производительность и 
адаптировали методологию для трёхмерных меди-
цинских изображений. 

Трансформеры (transformers), изначально разра-
ботанные для обработки естественного языка, в по-
следние годы начали применяться и в компьютер-
ном зрении. Vision Transformers (ViT) и их гибриды с 
CNN показывают впечатляющие результаты, осо-
бенно при доступности больших обучающих выбо-
рок. В медицинской визуализации трансформеры 
продемонстрировали эффективность для задач 
классификации патологии, детекции аномалий и 
мультиорганной сегментации. 

 
Успехи в анализе сосудистых структур 
Автоматизированный анализ сосудов представ-

ляет собой зрелую область применения глубокого 
обучения с многочисленными клинически валиди-
рованными решениями. 

Коронарные артерии 
Системы автоматической сегментации коронар-

ных артерий на КТ-ангиографии достигли уровня 
зрелости, близкого к клиническому внедрению. 
Исследование Zreik и соавт. (2018) продемонстри-
ровало способность CNN предсказывать функцио-
нальную значимость коронарных стенозов с пло-
щадью под ROC-кривой 0,74, что сопоставимо с 
оценкой опытных радиологов. 

Wolterink и соавт. (2019) применили генератив-
но-состязательные сети (GANs) для синтеза КТ-
ангиограмм из нативных КТ-изображений, эффек-
тивно «виртуализируя» контрастное усиление и 
позволяя оценить анатомию коронарных артерий 
без необходимости введения контрастного препа-
рата. Хотя эта технология остаётся эксперимен-
тальной, она иллюстрирует потенциал генератив-
ных моделей для решения проблемы ограниченно-
го контраста на нативных изображениях. 

Церебральные сосуды 
Автоматическая сегментация интракраниальных 

артерий и выявление аневризм на КТ- и МР-
ангиограммах активно исследуются. Park и соавт. 
(2019) разработали систему на основе CNN для де-
текции и классификации церебральных аневризм, 
достигнув чувствительности 91% и специфичности 
95% на валидационной выборке из 611 случаев. 

Liu и соавт. (2019) применили методы глубокого 
обучения для прогнозирования риска разрыва це-
ребральных аневризм на основании морфологиче-

ских параметров, автоматически извлекаемых из 
трёхмерных изображений. Их модель продемон-
стрировала AUC 0,82 для предсказания разрыва, 
что существенно превышает производительность 
традиционных морфологических индексов. 

Периферические артерии 
В контексте периферических артерий конечно-

стей методы глубокого обучения применяются для 
автоматической оценки степени стеноза, планиро-
вания эндоваскулярных вмешательств и прогнози-
рования исходов реваскуляризации. Тем не менее, 
специфические работы по артериям челюстно-
лицевой области остаются немногочисленными. 

 
Применение ИИ в челюстно-лицевой области: 
текущее состояние 
Технологии искусственного интеллекта активно 

внедряются в различные аспекты стоматологии и 
челюстно-лицевой хирургии, преимущественно 
для анализа зубочелюстных структур, но не сосуди-
стой анатомии. 

Детекция кариеса и периапикальной патоло-
гии. Несколько коммерческих систем на основе 
CNN (например, Diagnocat, Overjet, Pearl) обеспе-
чивают автоматическое выявление кариозных по-
ражений, периапикальных очагов, патологии паро-
донта на внутриротовых рентгенограммах и КЛКТ с 
чувствительностью 85–92%. 

Сегментация зубов и планирование ортодонти-
ческого лечения. Алгоритмы глубокого обучения 
используются для автоматической сегментации от-
дельных зубов на КЛКТ, построения трёхмерных 
моделей зубных рядов и прогнозирования резуль-
татов ортодонтического лечения. 

Выявление переломов и патологии височно-
нижнечелюстного сустава. CNN демонстрируют 
высокую точность в детекции переломов костей 
лицевого скелета на КТ-изображениях и классифи-
кации дегенеративных изменений височно-
нижнечелюстного сустава. 

Анализ околоносовых пазух. Системы автома-
тической сегментации околоносовых пазух и выяв-
ления синуситов разрабатываются для КТ и КЛКТ. 
Chowdhury и соавт. (2022) продемонстрировали 
точность автоматической классификации типов си-
нуситов на уровне 87%. 

Однако специфический анализ сосудистых 
структур челюстно-лицевой области остаётся ма-
лоизученным. Единственное релевантное исследо-
вание, которое удалось идентифицировать в про-
цессе подготовки настоящей работы, — это уже 
упомянутая публикация Aboelmaaty и соавт. (2024), 
посвящённая автоматической детекции задней 
верхней альвеолярной артерии. Авторы использо-
вали архитектуру U-Net, обученную на 450 КЛКТ-
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изображениях с ручной аннотацией положения 
артерии экспертами. Валидация на независимой 
выборке из 312 случаев показала: 

 Чувствительность – 89,4%.  

 Специфичность – 91,2%. 

 Dice coefficient – 0,86.  

 Среднее отклонение автоматически опреде-
ленного положения от экспертной разметки –  
0,74 ± 0,32 мм. 

Эти результаты демонстрируют техническую 
осуществимость применения методов глубокого 
обучения для локализации сосудистых структур на 
КЛКТ, но ограниченность исследования одной вет-
вью артерии и отсутствие анализа всей сосудистой 
сети верхней челюсти подчеркивают необходи-
мость дальнейших разработок. 

 
Технические требования и ограничения 
Разработка систем автоматизированного анали-

за медицинских изображений на основе глубокого 
обучения сталкивается с рядом фундаментальных 
технических вызовов: 

1. Необходимость больших аннотированных 
датасетов. Современные архитектуры глубоких 
нейронных сетей требуют десятков тысяч обучаю-
щих примеров для достижения высокой обобща-
ющей способности. В медицине создание таких 
датасетов затруднено необходимостью экспертной 
разметки, что трудоёмко и дорогостояще. Методы 
transfer learning (переноса обучения) и data 
augmentation (расширения данных) частично ре-
шают эту проблему, позволяя обучать модели на 
меньших выборках. 

2. Вариабельность протоколов сканирования. 
Различия в параметрах КТ/КЛКТ между учреждени-
ями (напряжение на трубке, толщина среза, алго-
ритмы реконструкции) приводят к вариабельности 
характеристик изображений, что может снижать 
производительность моделей при применении на 
данных из новых источников. Robust learning и 
domain adaptation — активные области исследова-
ний, направленные на создание моделей, устойчи-
вых к таким вариациям. 

3. Проблема «чёрного ящика» и клиническая ин-
терпретируемость. Глубокие нейронные сети часто 
критикуют за непрозрачность принятия решений, 
что создаёт барьеры для клинического доверия и 
регуляторного одобрения. Методы explainable AI 
(объяснимого ИИ), такие как градиентные карты ак-
тивации (Grad-CAM), attention mechanisms и layer-
wise relevance propagation, позволяют визуализиро-
вать области изображения, на которые модель «об-
ращает внимание» при принятии решения, повышая 
интерпретируемость. 

4. Валидация и регуляторные требования.  
Для клинического внедрения системы на основе 
ИИ должны пройти тщательную валидацию в про-
спективных исследованиях и получить регулятор-
ное одобрение (например, FDA 510(k) в США, мар-
кировку CE в Европе, регистрационное удостове-
рение Росздравнадзора в России). Это требует де-
монстрации не только технической точности, но и 
клинической полезности и безопасности. 

Несмотря на эти вызовы, текущее состояние 
технологий глубокого обучения в медицинской ви-
зуализации сосудистых структур демонстрирует 
зрелость, достаточную для адаптации этих методов 
к специфической задаче анализа верхнечелюстной 
артерии. Следующий раздел представляет концеп-
туальную модель такой системы. 

 

АРХИТЕКТУРА СИСТЕМЫ: ОБЩИЙ ОБЗОР 
Предлагаемая концептуальная система для авто-

матизированного анализа анатомии верхнечелюст-
ной артерии построена как последовательность 
взаимосвязанных модулей обработки данных. Пер-
вый модуль выполняет предобработку изображе-
ний: загружает DICOM-файлы компьютерной и ко-
нусно-лучевой томографии, стандартизирует интен-
сивности путем нормализации по окну мягких тка-
ней, ориентирует данные в стандартное анатомиче-
ское пространство и контролирует качество путём 
проверки полноты анатомического покрытия. 

Второй модуль осуществляет сегментацию ана-
томических структур. Система автоматически вы-
деляет костные ориентиры, включая верхнюю че-
люсть, скуловую кость и крыловидные пластинки, 
сегментирует верхнечелюстную пазуху и иденти-
фицирует крылонебную и подвисочную ямки.  

Третий модуль обеспечивает детекцию и сег-
ментацию сосудистой сети: выделяет ствол верх-
нечелюстной артерии, производит трассировку 
основных ветвей, к которым относятся задняя 
верхняя альвеолярная, подглазничная, нисходящая 
небная и клиновидно-небная артерии, после чего 
строит трёхмерную модель сосудистого дерева. 

Четвёртый модуль выполняет морфометрический 
анализ и классификацию. Система измеряет диаметр 
сосудов в ключевых точках, определяет топографи-
ческие взаимоотношения с костными структурами и 
верхнечелюстной пазухой, классифицирует выявлен-
ные варианты анатомии и оценивает хирургический 
риск по предопределенным критериям.  

Пятый модуль отвечает за визуализацию и кли-
нический отчёт: генерирует трёхмерные рекон-
струкции с цветовым кодированием зон риска, ав-
томатически формирует структурированный отчёт 
и обеспечивает интеграцию результатов в систему 
архивирования и передачи изображений и меди-
цинские информационные системы. 
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Рисунок 2. Алгоритм ИИ для диагностики аномалий верхнечелюстной артерии 
Figure 2. An AI algorithm for diagnosing maxillary artery abnormalities 
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МЕТОДОЛОГИЧЕСКИЕ РЕШЕНИЯ  
ДЛЯ КЛЮЧЕВЫХ МОДУЛЕЙ 
Сегментация сосудистой сети: выбор архитектуры 
Для задачи сегментации верхнечелюстной арте-

рии и её ветвей наиболее перспективной представ-
ляется архитектура nnU-Net, то есть самоконфигу-
рирующаяся вариация U-Net, предложенная Isensee 
и соавторами в 2021 году. Эта архитектура проде-
монстрировала результаты уровня state-of-the-art в 
многочисленных задачах медицинской сегментации, 
включая сосудистые структуры. 

Ключевые преимущества nnU-Net для нашей за-
дачи заслуживают детального рассмотрения. Во-
первых, система обеспечивает автоматическую оп-
тимизацию гиперпараметров на основе характери-
стик датасета, таких как размерность изображений, 
размер объектов и соотношение классов, что сни-
жает необходимость ручной настройки. Во-вторых, 
архитектура поддерживает трёхмерные данные с 
эффективным использованием контекстной ин-
формации из смежных срезов, критически важной 
для точной трассировки сосудов. В-третьих, кас-
кадная архитектура позволяет работать с объекта-
ми разного масштаба: ствол верхнечелюстной ар-
терии имеет диаметр от двух до трёх миллиметров, 
тогда как мелкие ветви достигают лишь половины-
полутора миллиметров. В-четвёртых, система де-
монстрирует устойчивость к вариациям парамет-
ров сканирования, достигаемую за счёт интенсив-
ного расширения данных во время обучения. 

Впрочем, заслуживают рассмотрения и альтер-
нативные архитектуры. Трёхмерная U-Net с 
attention gates позволяет сфокусировать сеть на 
сосудистых структурах при одновременном подав-
лении фоновых тканей. V-Net представляет собой 
специализированную архитектуру для трёхмерной 
сегментации с использованием Dice loss, что может 
оказаться выгодным для работы с тонкими структу-
рами типа мелких сосудов. Swin-UNETR, являющий-
ся гибридом трансформера и U-Net, показал впе-
чатляющие результаты в мультиорганной сегмен-
тации. 

Решение проблемы ограниченного контраста 
Фундаментальная техническая проблема заклю-

чается в том, что на нативных изображениях ком-
пьютерной и конусно-лучевой томографии кон-
траст между кровью в просвете артерии и окружа-
ющими мягкими тканями минимален. Для её ре-
шения мы предлагаем несколько подходов. 

Первый подход предполагает использование 
косвенных признаков. Вместо прямой визуализа-
ции просвета сосуда система может опираться на 
вторичные признаки: костные каналы, в которых 
проходят артерии (например, подглазничный ка-
нал или крылонебная ямка), паттерны мягкотканно-

го затенения вдоль предполагаемого хода сосуда и 
топографические взаимоотношения с хорошо ви-
зуализируемыми структурами, к числу которых от-
носятся крыловидные отростки и верхнечелюстная 
пазуха. 

Второй подход основан на трансферном обуче-
нии с предобучением на ангиографиях. Нейронную 
сеть можно сначала обучить на небольшой выбор-
ке КТ-ангиограмм, где сосуды визуализируются от-
чётливо, после чего провести fine-tuning на боль-
ших наборах нативных исследований. Это позволя-
ет сети научиться распознавать паттерны сосуди-
стой анатомии даже при ограниченном контрасте. 

Третий подход предполагает мультимодальное 
обучение. Если для части пациентов доступны как 
нативные исследования, так и КТ-ангиограммы, 
можно обучить модель предсказывать положение 
сосудов на нативных изображениях, используя ан-
гиограммы в качестве ground truth. 

Четвёртый подход, технически наиболее слож-
ный, заключается в синтетическом контрастном 
усилении с помощью генеративно-состязательных 
сетей. Такие сети могут быть обучены трансформи-
ровать нативные изображения в виртуальные ан-
гиограммы. Успешное применение этого подхода 
для коронарных артерий, продемонстрированное 
Wolterink и соавторами в 2019 году, показывает 
принципиальную осуществимость метода. 

Стратегия создания обучающего датасета 
Ключевым препятствием для реализации пред-

лагаемой системы является необходимость боль-
шого датасета аннотированных изображений. Ра-
циональная стратегия создания такого датасета 
включает несколько последовательных этапов. 

На первом этапе создаётся пилотный датасет 
объёмом от ста до ста пятидесяти случаев. Произ-
водится ретроспективный отбор изображений 
компьютерной и конусно-лучевой томографии па-
циентов, проходивших обследование перед хирур-
гическими вмешательствами. Эксперты — челюст-
но-лицевой хирург совместно с рентгенологом — 
выполняют ручную аннотацию с использованием 
специализированного программного обеспечения, 
такого как 3D Slicer или ITK-SNAP. Оценка межэкс-
пертного согласия обеспечивает качество размет-
ки. Полученный датасет используется для предва-
рительного обучения модели и оценки техниче-
ской осуществимости. 

На втором этапе формируется основной датасет 
объёмом от пятисот до тысячи случаев. Расшире-
ние датасета осуществляется с привлечением не-
скольких медицинских центров для обеспечения 
вариабельности параметров сканирования. Ча-
стичная автоматизация аннотации становится воз-
можной: модель, обученная на пилотном датасете, 
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генерирует предварительную разметку, которую 
эксперт корректирует, что позволяет экономить от 
60% до 70% времени. Стратифицированный отбор 
случаев обеспечивает представленность редких 
анатомических вариантов. 

На третьем этапе собирается валидационный 
датасет объёмом от двухсот до трёхсот случаев. 
Формируется независимая когорта для оценки 
производительности модели. Проспективный сбор 
данных сопровождается фиксацией клинических 
исходов, включающих наличие или отсутствие ин-
траоперационных осложнений, что позволяет оце-
нить клиническую полезность системы. 

Четвёртый этап представляет собой непрерыв-
ное обучение. Создаются механизмы обратной 
связи для инкорпорации новых случаев и редких 
вариантов. Модель периодически переобучается 
на расширенном датасете, что обеспечивает по-
стоянное повышение точности распознавания. 

Классификация анатомических вариантов  
и оценка риска 
После сегментации сосудистой сети система 

должна классифицировать выявленные анатомиче-
ские паттерны и оценить хирургический риск. 
Предлагаемая таксономия включает четыре класса. 

Первый класс соответствует типичной анатомии. 
Ствол артерии проходит медиально от латераль-
ной крыловидной мышцы. Задняя верхняя альвео-
лярная артерия располагается на расстоянии бо-
лее пятнадцати миллиметров от альвеолярного 
гребня. Ветвление в крылонебной ямке соответ-
ствует стандартному паттерну. Хирургический риск 
при такой анатомии остается низким. 

Второй класс включает малые вариации. Ствол 
может проходить поверхностно, то есть латераль-
но от крыловидной мышцы. Задняя верхняя аль-
веолярная артерия располагается на расстоянии от 
десяти до пятнадцати миллиметров от альвеоляр-
ного гребня при диаметре менее полутора милли-
метров. Наблюдаются незначительные изменения 
в ветвлении без клинической значимости. Хирур-
гический риск оценивается как умеренный, требу-
ющий внимания при синус-лифтинге. 

Третий класс характеризуется значительными 
вариациями. Задняя верхняя альвеолярная арте-
рия располагается менее чем в десяти миллимет-
рах от альвеолярного гребня при диаметре более 
полутора миллиметров, что создаёт высокий риск 
при синус-лифтинге. Ствол может проникать через 
височную мышцу. Артерия может иметь аномаль-
ное начало. Хирургический риск высок и требует 
модификации хирургической техники или отказа от 
планируемого вмешательства. 

Четвёртый класс объединяет редкие аномалии: 
фенестрацию, дубликацию ствола, патологическое 

изменение хода при опухолях или после травмы. 
Хирургический риск очень высок и требует инди-
видуального планирования, возможно с выполне-
нием КТ-ангиографии. 

Для автоматической классификации можно ис-
пользовать отдельную нейронную сеть, например 
ResNet или EfficientNet, обученную на признаках, 
извлеченных из сегментационных масок и морфо-
метрических параметров. 

Интеграция в клинический workflow 
Критическим аспектом любой системы меди-

цинского искусственного интеллекта является её 
бесшовная интеграция в существующий клиниче-
ский рабочий процесс. Предлагаемая система 
должна соответствовать нескольким принципиаль-
ным требованиям. 

Во-первых, система автоматически получает 
изображения из системы архивирования и переда-
чи изображений при соответствии определенным 
критериям, например при назначении «предопе-
рационная КТ для дентальной имплантации». Во-
вторых, анализ запускается в фоновом режиме без 
необходимости ручного вмешательства оператора. 
В-третьих, система генерирует структурированный 
отчёт в стандартизированном формате с визуали-
зацией зон хирургического риска. В-четвёртых, 
обеспечивается интеграция с медицинскими ин-
формационными системами для автоматической 
передачи результатов в электронную медицинскую 
карту пациента. В-пятых, предусматривается ин-
терфейс для коррекции результатов врачом в слу-
чае явных ошибок системы. В-шестых, все взаимо-
действия логируются для целей непрерывного 
улучшения и регуляторного аудита. 

 
ПОТЕНЦИАЛЬНЫЕ ПРЕИМУЩЕСТВА  
И КЛИНИЧЕСКАЯ ЦЕННОСТЬ 
Стандартизация диагностических подходов 
Одним из фундаментальных преимуществ авто-

матизированного анализа является устранение 
межиндивидуальной вариабельности в интерпре-
тации изображений. Исследования документируют 
значительные различия между специалистами в 
оценке анатомии верхнечелюстной артерии: коэф-
фициент межэкспертного согласия для определе-
ния положения задней верхней альвеолярной ар-
терии колеблется от 0,68 до 0,82 в зависимости от 
опыта специалистов [22, 23]. 

Система на основе искусственного интеллекта 
обеспечивает воспроизводимую, детерминиро-
ванную оценку, идентичную для одного и того же 
изображения независимо от времени анализа, за-
груженности рентгенолога или других субъектив-
ных факторов. Это создает основу для единых про-
токолов предоперационной оценки в различных 
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учреждениях, объективных критериев хирургиче-
ского риска для принятия клинических решений и 
сопоставимости результатов в многоцентровых 
исследованиях и регистрах. 

Повышение эффективности предоперационного 
планирования 
Время, затрачиваемое рентгенологом на де-

тальный анализ положения верхнечелюстной ар-
терии с построением трёхмерных реконструкций, 
составляет от двадцати до сорока пяти минут [24]. 
Автоматизированная система способна выполнять 
эквивалентный анализ за одну–пять минут в зави-
симости от вычислительных ресурсов. 

Экономия времени имеет несколько аспектов. 
Во-первых, снижается нагрузка на рентгенологов, 
позволяя им сосредоточиться на сложных диагно-
стических случаях, требующих экспертного сужде-
ния. Во-вторых, хирурги более быстро получают 
предоперационную информацию, что ускоряет 
планирование вмешательств. В-третьих, становится 
возможным рутинный анализ для всех пациентов, 
проходящих предоперационную визуализацию, 
тогда как сейчас детальная оценка сосудистой ана-
томии часто проводится только при наличии спе-
циального запроса. 

Минимизация интраоперационных осложнений 
Предполагается, что точная предоперационная 

идентификация анатомических вариантов высокого 
риска может снизить частоту интраоперационных 
сосудистых осложнений. Хотя прямые доказатель-
ства этого утверждения для верхнечелюстной ар-
терии отсутствуют, аналогии из других областей 
хирургии подтверждают эту гипотезу. 

В нейрохирургии использование систем автома-
тической сегментации сосудов при планировании 
резекции артериовенозных мальформаций ассо-
циировано со снижением частоты послеопераци-
онного неврологического дефицита с 8,2% до 4,7%, 
что соответствует относительному снижению риска 
на 43%. В кардиохирургии предоперационное 
трёхмерное моделирование коронарных артерий 
коррелирует с сокращением времени операции 
аортокоронарного шунтирования на 18–22% и 
снижением частоты ревизий по поводу кровотече-
ния. 

Экстраполируя эти данные на контекст челюст-
но-лицевой хирургии, можно предположить, что 
система автоматизированного анализа верхнече-
люстной артерии потенциально способна снизить 
частоту значимого интраоперационного кровоте-
чения при синус-лифтинге с текущих 3–7% до 1–2%, 
уменьшить необходимость конверсии эндоскопи-
ческих операций на пазухах в открытые вмеша-
тельства для контроля кровотечения и улучшить 
исходы реконструктивных операций за счёт точно-

го планирования микрососудистых анастомозов. 
Однако эти предположения требуют проспектив-
ной валидации в клинических исследованиях. 

Образовательные применения 
Помимо клинического использования, система 

автоматизированного анализа может служить 
мощным образовательным инструментом. Студен-
ты медицинских вузов и ординаторы могут исполь-
зовать систему для интерактивного изучения ана-
томии, визуализируя различные анатомические 
варианты верхнечелюстной артерии на реальных 
клинических случаях, что дополняет традиционное 
изучение на кадаверном материале. 

Трёхмерные модели, генерируемые системой, 
могут интегрироваться в виртуальные симуляторы 
для симуляции хирургических сценариев и отра-
ботки хирургических навыков в безопасной среде. 
Автоматизированный анализ больших массивов 
изображений позволяет создать цифровой атлас 
вариабельности верхнечелюстной артерии, стра-
тифицированный по демографическим парамет-
рам, полезный для научных и образовательных це-
лей. 

Исследовательские применения 
Наличие автоматизированного инструмента 

анализа открывает новые возможности для анато-
мических исследований. Становятся осуществи-
мыми популяционные исследования частоты раз-
личных вариантов строения в больших когортах с 
стратификацией по возрасту, полу и этнической 
принадлежности. Возможно изучение корреляций 
между анатомическими вариантами и клинически-
ми исходами хирургических вмешательств. Систе-
ма позволяет проводить морфометрические ис-
следования изменений сосудистой анатомии при 
патологических процессах, таких как опухоли или 
остеорадионекроз. Открываются перспективы для 
изучения генетических ассоциаций между опреде-
ленными вариантами строения и генетическими 
маркерами. 

 
ОГРАНИЧЕНИЯ, ВЫЗОВЫ И БАРЬЕРЫ  
ДЛЯ ВНЕДРЕНИЯ 
Технические ограничения 
Качество и вариабельность исходных данных. 

Эффективность систем глубокого обучения крити-
чески зависит от качества входных данных. В кон-
тексте компьютерной и конусно-лучевой томогра-
фии существуют значительные вариации. Различ-
ные производители сканеров — Siemens, GE, Philips 
для компьютерной томографии, Planmeca и 
Carestream для конусно-лучевой томографии — ис-
пользуют различные алгоритмы реконструкции 
изображений. Параметры сканирования, включа-
ющие напряжение на трубке, толщину среза и поле 
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обзора, варьируют между учреждениями и прото-
колами. Артефакты от металлических зубных кон-
струкций могут значительно ухудшать качество 
изображений. 

Для обеспечения устойчивости системы к этим 
вариациям требуется обучение на мультицентро-
вых данных с различным оборудованием, агрес-
сивное расширение данных во время обучения и, 
возможно, создание отдельных моделей для ком-
пьютерной и конусно-лучевой томографии или ис-
пользование мультимодальной архитектуры. 

Редкие анатомические варианты. Обучение 
модели распознавать редкие варианты с частотой 
менее одного процента требует их адекватной 
представленности в обучающей выборке. Для ва-
рианта с частотой 0,5% требуется датасет минимум 
двадцать тысяч случаев, чтобы иметь хотя бы сто 
примеров этого варианта для обучения. 

Стратегии решения включают целенаправлен-
ный поиск и включение редких случаев, примене-
ние методов few-shot learning для обучения на ма-
лых выборках и использование синтетических дан-
ных, генерированных на основе известных анато-
мических принципов. 

Ограниченный контраст мягких тканей. Как об-
суждалось ранее, визуализация сосудов на натив-
ных изображениях представляет фундаментальную 
техническую проблему. В случаях с ожирением, 
обезвоживанием или анемией контраст может 
быть настолько низким, что даже эксперт испыты-
вает трудности с идентификацией артерии. Систе-
ма искусственного интеллекта будет сталкиваться с 
аналогичными ограничениями. 

Реалистичное ожидание заключается в том, что 
система будет высокоточна в 85–90% случаев с хо-
рошим качеством изображений, но может требо-
вать подтверждения экспертом или дополнитель-
ной визуализации, такой как КТ-ангиография, в 
сложных случаях. 

Организационные и регуляторные барьеры 
Регуляторное одобрение. Системы медицин-

ского искусственного интеллекта, используемые 
для принятия клинических решений, подлежат ре-
гулированию как медицинские изделия. В России 
это требует получения регистрационного удосто-
верения Росздравнадзора, проведения клиниче-
ских испытаний для демонстрации безопасности и 
эффективности и соответствия государственным 
стандартам для программного обеспечения меди-
цинского назначения. Процесс регистрации может 
занимать от двенадцати до двадцати четырёх ме-
сяцев и требует значительных финансовых вложе-
ний, оценки которых варьируют от пяти до пятна-
дцати миллионов рублей. 

Интеграция в медицинские информационные 
системы. Большинство российских медицинских 
учреждений используют различные медицинские 
информационные системы — МЕДИАЛОГ, Медиа-
логия, БАРС, Медицина 2.0 и другие, — которые ча-
сто не имеют стандартизированных программных 
интерфейсов для интеграции внешних систем ис-
кусственного интеллекта. Это создает технические 
барьеры для развертывания решений. 

Необходимы разработка стандартизированных 
протоколов обмена данными, участие вендоров 
медицинских информационных систем в создании 
экосистемы приложений искусственного интеллек-
та и, возможно, государственная инициатива по 
стандартизации интеграционных интерфейсов. 

Экономические факторы. Разработка, валида-
ция и внедрение системы автоматизированного 
анализа требует значительных инвестиций. Созда-
ние обучающего датасета обходится в десять-
двадцать миллионов рублей, что включает экс-
пертную аннотацию и инфраструктуру хранения 
данных. Разработка и обучение модели требует 
пяти–десяти миллионов рублей на вычислительные 
ресурсы и заработную плату специалистов по ма-
шинному обучению. Клинические испытания оце-
ниваются в пятнадцать-тридцать миллионов руб-
лей. Регуляторное одобрение требует пяти-
пятнадцати миллионов рублей. Поддержка и не-
прерывное обновление составляют три-пять мил-
лионов рублей ежегодно. Таким образом, ориен-
тировочная стоимость вывода продукта на рынок 
составляет от тридцати пяти до семидесяти пяти 
миллионов рублей. 

Модель монетизации должна обеспечить воз-
врат инвестиций через лицензирование системы 
клиникам по подписочной модели, плату за анализ 
каждого исследования или государственное фи-
нансирование в рамках программ цифровизации 
здравоохранения. 

Врачебное доверие и приемлемость. Внедре-
ние искусственного интеллекта в клиническую 
практику часто сталкивается с сопротивлением со 
стороны медицинских специалистов, обусловлен-
ным опасениями относительно точности и надеж-
ности автоматизированных систем, восприятием 
искусственного интеллекта как угрозы профессио-
нальной автономии и неясностью юридической 
ответственности в случае ошибок системы. 

Стратегии повышения приемлемости включают 
позиционирование системы как инструмента под-
держки принятия решений, а не замены врача, 
обеспечение прозрачности алгоритмов с визуали-
зацией признаков, на которые опирается система, 
вовлечение клиницистов в процесс разработки и 
валидации, а также программы обучения для вра-
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чей по использованию инструментов искусственно-
го интеллекта. 

Этические соображения 
Конфиденциальность данных. Обучение моде-

лей на медицинских изображениях требует соблю-
дения законодательства о персональных данных, 
включая Федеральный закон 152-ФЗ в России и 
GDPR в Европе. Необходимы деидентификация 
изображений с удалением метаданных пациентов, 
получение информированного согласия на исполь-
зование данных для обучения искусственного ин-
теллекта и защищённые каналы передачи данных. 

Предвзятость алгоритмов. Если обучающая вы-
борка не репрезентативна по демографическим 
параметрам, таким как возраст, пол и этническая 
принадлежность, обученная модель может демон-
стрировать различную точность для разных групп 
пациентов. Это этически неприемлемо. 

Стратегия митигации включает обеспечение 
демографического разнообразия обучающей вы-
борки, стратифицированную валидацию с отдель-
ной оценкой точности для различных подгрупп и 
непрерывный мониторинг производительности 
после внедрения с корректировкой при выявлении 
диспропорций. 

Юридическая ответственность. Юридические 
рамки ответственности при использовании искус-
ственного интеллекта в медицине остаются неяс-
ными. Вопросы включают: несёт ли врач полную 
ответственность за решения, принятые с использо-
ванием рекомендаций искусственного интеллекта, 
может ли разработчик системы нести ответствен-
ность в случае ошибки алгоритма, должны ли па-
циенты быть информированы об использовании 
искусственного интеллекта в их лечении. Эти во-
просы требуют законодательного урегулирования 
и выработки клинических руководств по использо-
ванию искусственного интеллекта в хирургическом 
планировании. 

 
Заключение 
Настоящая работа представила концептуальное 

обоснование применения искусственного интел-
лекта для автоматизированного анализа анатомии 
верхнечелюстной артерии по данным компьютер-
ной и конусно-лучевой томографии. 

Мы систематизировали известные анатомиче-
ские вариации сего сосуда и их клиническую зна-
чимость. Точная предоперационная оценка сосу-
дистой топографии критически важна для миними-
зации интраоперационных осложнений при синус-
лифтинге, дентальной имплантации, эндоскопиче-
ских вмешательствах на околоносовых пазухах и 
реконструктивных операциях. 

Анализ современного состояния методов глубо-
кого обучения в медицинской визуализации сосудов 
демонстрирует высокий уровень зрелости техноло-
гий для смежных анатомических областей — коро-
нарных, церебральных, периферических артерий. 
Таковое обосновывает техническую осуществи-
мость их адаптации для анализа верхнечелюстной 
артерии. Ключевые технологические компоненты — 
сверточные нейронные сети для семантической 
сегментации, алгоритмы трехмерной реконструк-
ции, методы transfer learning для работы с ограни-
ченными обучающими выборками — доступны и 
апробированы в клинической практике. 

Предложенная архитектура системы включает 
последовательность модулей: предобработка 
изображений, сегментация анатомических струк-
тур, детекция и трассировка сосудистой сети, мор-
фометрический анализ, классификация вариантов, 
оценка хирургического риска с генерацией визу-
альных отчётов. Для модуля сегментации обосно-
вывается выбор архитектуры nnU-Net с её само-
конфигурирующимися свойствами и устойчивостью 
к вариациям параметров сканирования. 

Потенциальные преимущества автоматизиро-
ванного анализа включают стандартизацию диа-
гностических подходов с устранением субъектив-
ности интерпретации, повышение эффективности 
предоперационного планирования через сокра-
щение времени анализа, возможность минимиза-
ции интраоперационных осложнений через точную 
идентификацию анатомических вариантов высоко-
го риска, а также образовательные и исследова-
тельские применения. 

Вместе с тем признаются существенные барье-
ры для реализации концепции. Техническая про-
блема ограниченного мягкотканного контраста на 
нативных изображениях требует инновационных 
методологических решений: использование кос-
венных анатомических признаков, transfer learning с 
предобучением на контрастных ангиограммах, 
возможное применение генеративных моделей 
для синтетического усиления контраста. Организа-
ционные вызовы включают необходимость созда-
ния больших мультицентровых датасетов анноти-
рованных изображений, интеграции с разнород-
ными медицинскими информационными система-
ми, обеспечения экономической устойчивости раз-
работки. Регуляторный путь требует проведения 
клинических испытаний и получения одобрения 
как медицинского изделия. Этические соображе-
ния включают обеспечение конфиденциальности 
данных пациентов, предотвращение алгоритмиче-
ской предвзятости, прояснение юридической от-
ветственности при использовании искусственного 
интеллекта в клинических решениях. 
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Предложенная фазовая исследовательская тра-
ектория — от технико-экономического обоснования 
через расширение датасета и валидацию к оценке 
клинической полезности в рандомизированных ис-
пытаниях и последующему внедрению — обеспечи-
вает структурированный путь для трансформации 
концепции в клинически применимое решение. 

Важно подчеркнуть: настоящая работа носит 
концептуальный характер и не описывает готовую 
технологию либо завершенное исследование. Мы 
представили научно обоснованную аргументацию 
возможности и целесообразности разработки си-
стем автоматизированного анализа верхнечелюст-
ной артерии, опираясь на достижения в смежных 
областях применения искусственного интеллекта в 

медицинской визуализации. Реализация концепции 
потребует многолетних коллективных усилий меж-
дисциплинарных команд — специалистов по ма-
шинному обучению, челюстно-лицевых хирургов, 
рентгенологов, анатомов, инженеров медицинских 
систем, — а также значительных финансовых инве-
стиций и институциональной поддержки. 

Тем не менее, учитывая клиническую значи-
мость проблемы, технологическую готовность ме-
тодов искусственного интеллекта и стратегическое 
направление развития здравоохранения в сторону 
цифровизации и персонализированной медицины, 
мы считаем предложенное направление исследо-
ваний перспективным и заслуживающим внимания 
научного и медицинского сообщества. 
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