HOBAЯ KOPOHABИРУСНАЯ ИНФЕКЦИЯ COVID-19 NOVEL CORONAVIRUS INFECTION COVID-19

https://doi.org/10.20340/vmi-rvz.2021.5.COVID.3

УДК 614.47

ВЛИЯНИЕ ТИПОВ ИНТЕРФЕРОНОВ НА ПРОФИЛАКТИКУ И ЛЕЧЕНИЕ COVID-19

С.С. Саидов, С.Н. Ионов, А.С. Саидов, Л.В. Красовская, А.В. Заботнов

Медицинский университет «Реавиз», Москва

Резюме. Рассматриваются свойства эндогенного и экзогенного интерферона, как наиболее эффективного элемента борьбы с новой коронавирусной инфекцией, анализируется использование различных групп интерферонов, временные критерии их применения, резистентность к измененным штаммам коронавируса.

Ключевые слова: интерферон (ИНФ), пандемия, коронавирус, SARS-CoV-2, COVID-19.

Для цитирования: Саидов С.С., Ионов С.Н., Саидов А.С., Красовская Л.В., Заботнов А.В. Влияние типов интерферонов на профилактику и лечение COVID-19. *Вестник медицинского института «РЕАВИЗ». Реабилитация, Врач и Здоровье.* 2021;5(53):17-22. https://doi.org/10.20340/vmi-rvz.2021.5.COVID.3

INFLUENCE OF INTERFERON TYPES ON COVID-19 PREVENTION AND TREATMENT

S.S. Saidov, S.N. Ionov, A.S. Saidov, L.V. Krasovskaya, A.V. Zabotnov

Medical University "Reaviz", Moscow

Abstract. This article discusses the properties of endogenous and exogenous interferon as the most effective element in the fight against a new coronavirus infection, analyzes the use of various groups of interferons, the time criteria for their use, and resistance to modified strains of coronavirus.

Key words: interferon (INF), pandemic, coronavirus, SARS-CoV-2, COVID-19.

Cite as: Saidov S.S., Ionov S.N., Saidov A.S., Krasovskaya L.V., Zabotnov A.V. Influence of interferon types on COVID-19 prevention and treatment. *Bulletin of the Medical Institute "REAVIZ"*. *Rehabilitation, Doctor and Health*. 2021;5(53):17-22. https://doi.org/10.20340/vmi-rvz.2021.5.COVID.3

Введение

В конце 2019 года в Китайской Народной Республике произошла вспышка новой коронавирусной инфекции, вызванной вирусом SARS-CoV-2. Всемирная организация здравоохранения присвоила данному заболеванию название «COVID-19» и в марте 2020 года объявила о пандемии.

В настоящее время специалистами здравоохранения разрабатываются и внедряются препараты, которые могут быть использованы в профилактике и лечении COVID-19. К ним относятся вакцины, противовирусные препараты, иммуноглобулины и интерфероны (ИНФ).

Цель данной работы заключается в изучении влияния интерферона при профилактике и лечении коронавирусной инфекции.

Материалы и методы

В работе проведен анализ исследований отечественных и зарубежных авторов по оценке эффективности различных типов интерферонов в отношении COVID-19.

Интерфероны – это цитокины, выделяемые клетками организма в ответ на вторжение вируса, они индуцируют и активируют определенные клеточные белки, блокирующие адсорбцию и репликацию вируса. Молекула ИНФ запускает и стимулирует все механизмы противовирусной защиты:

- прямое противовирусное действие за счет индукции экспрессии интерферонстимулирующих генов и синтеза продуктов этих генов;
- активация функций натуральных киллерных (НК) клеток, обладающих способностью лизировать инфицированные вирусом клетки организма;
- усиление экспрессии молекул главного комплекса гистосовместимости I класса на разных типах клеток, инфицированных вирусами, для увеличения эффективности представления вирусных антигенов цитотоксическим Т-лимфоцитам. Это приводит к активации специфического распознавания инфицированных вирусом клеток цитотоксическими Т-лимфоцитами с их последующим лизисом;
- усиление функциональной активности цитотоксических рецепторов CD8+ Т-лимфоцитов для антиген-специфического лизиса вирус-инфицированных клетокмишеней. Это означает, что ИНФ активирует как антиген-неспецифический лизис инфицированных вирусами клеток с участием НК клеток, так и антиген-специфический лизис Т-лимфоцитами;
- активация функций дендритных клеток (ДК), являющаяся важнейшей составной частью противовирусной активности интерферона, так как ДК представляют вирусные антигены Т-лимфоцитам и тем самым осуществляют связь между врожденным и приобретенным противовирусным иммунитетом;

• стимуляция дифференцировки и функциональной активности рецепторов CD4+ Т-лимфоцитов хелперов 1-го типа для усиления клеточного противовирусного иммунитета [1].

Интерферон синтезируется клетками иммунной системы и соединительной ткани. В зависимости от того, какие клетки продуцируют эндогенный интерферон, выделяют три его типа:

- α интерферон вырабатывается лей-коцитами;
- β интерферон синтезируется фибробластами – клетками соединительной ткани;
- у интерферон вырабатывается активированными Т-лимфоцитами, макрофагами, естественными киллерами.

Классификация экзогенных интерферонов, основанная на наличии специфических клеточных мембранных рецепторов, включает три их типа [2]:

I тип — ИФН- α , ИФН- β , ИФН- κ , ИФН- ϵ , ИФН- ω :

II тип – ИФН- γ ; III тип – ИФН- λ 1, ИФН- λ 2 и ИФН– λ 3.

Профилактика COVID-19

Вирус SARS-CoV-2, вызывающий коронавирусную инфекцию, использует ангиотензинпревращающий фермент 2 (АПФ2) как рецептор для проникновения в клетки человека. Активность АПФ2 стимулируется интерферонами. Швейцарские ученые показали в эксперименте in vitro, что интерфероны I и II типа активируют синтез АПФ2 в базальных клетках верхних дыхательных путей, потенциально создавая новые порталы для проникновения вируса. Поразительно, что ИНФ III типа, также изученный в исследованиях, активировал противовирусную защиту и незначительно повышал матричную РНК АПФ2, что не позволяло обнаруживать белок АПФ2 на поверхности клеток [3].

Таким образом, ИНФ III типа имеет преимущество в борьбе с COVID-19, так как не вызывает экспрессию АПФ2 на поверхности клеток дыхательных путей.

Коронавирус SARS-CoV-2 чаще всего попадает в организм человека через дыхательные пути. Когда вирус проникает в эпителиальные клетки носа, бронхов или легких, эти клетки начинают вырабатывать молекулы ИНФ. Американские вирусологи смоделировали инфицирование культуры клеток эпителия дыхательных путей человека вирусом SARS-CoV-2 и обнаружили полное отсутствие ответа ИНФ I и III типов на коронавирус. Однако предварительная обработка клеток и последующее использование ИНФ I и III типа значительно снижала репликацию вируса в эпителии исследуемых клеток, что коррелировало с повырегуляции антивирусных шением фекторных генов [4]. Результаты исследования демонстрируют, что SARS-CoV-2 при заражении клеток не вызывает интерфероновый ответ, но наблюдается чувствительность к ИНФ I и III типов к вирусу. Другими словами, профилактика интерфероном является эффективным методом борьбы с COVID-19 при использовании интерферонотерапии I и III типов.

Эти утверждения подтвердили китайские специалисты, работающие в отделениях с пациентами, инфицированными COVID-19. Они начали применять назальные препараты ИНФ для профилактики болезни. Комплексные профилактические меры, частью которых был ИНФ I типа, снизили заболеваемость COVID-19 среди врачей с 90 % до ~0 % (нулевая заболеваемость среди 2944 врачей города Ухань за 28 дней исследования) [5].

Немецкие ученые сравнили ингибирующую активность интерферонов I типа (IFN- α) и III типа (IFN- λ) против SARS-CoV-2 и SARS-CoV-1. Используя две линии эпителиальных клеток млекопитающих (Calu-3 человека и Vero E6 обезьяны), они обнаружили, что оба ИНФ дозозависимо ингибируют SARS-CoV-2. Против SARS-CoV-1 в этих клеточных линиях активен только IFN- α . Вирус SARS-CoV-2 проявил более

высокую чувствительность к ИНФ, чем SARS-CoV-1 [6]. Эти данные свидетельствуют о том, что ИНФ I типа и менее склонный к побочным эффектам ИНФ III типа эффективны в лечении и профилактике COVID-19.

Лечение COVID-19

С первых дней распространения новой коронавирусной инфекции работники здравоохранения начали применять экзогенный ИНФ для лечения COVID-19. В частности, исследования, проведенные кубинскими врачами с использованием рекомбинантного ИНФ-α2b, показали положительные результаты при лечении коронавирусной инфекции. Пациентов с подтвержденным диагнозом COVID-19 разделили на две группы: первая группа (761 человек) получала комбинированную терапию пероральными противовирусными препаратами (лопинавир/ ритонавир и хлорохин) с внутримышечным введением ИФН-α2b (Heberon® Alpha R, Центр генной инженерии и биотехнологии, Гавана, Куба) три раза в неделю в течение двух недель, а вторая группа (53 человека) только пероральные противовирусные препараты (лопинавир/ритонавир и хлорохин) без ИНФ.

По итогам исследования доля пациентов, выписанных из стационара после проведенной терапии, была выше в первой группе, чем во второй (95,4 % против 26,1 %). Количество летальных случаев было в пределах 2,95 %. Для пациентов первой группы, получавших ИНФ- α 2b, летальность составила 0,92 %, что достоверно с вероятностью 0,95 отличалось от второй группы [7]. Это доказывает терапевтическую эффективность ИНФ- α 2b при COVID-19 и предполагает использование эндогенного ИНФ при лечении пациентов с коронавирусной инфекцией.

Российские ученые исследовали совместное использование ректальных суппозиториев с ИНФ (ВИФЕРОН*) в составе комплексной терапии от коронавирусной инфекции. В группе, получавшей дополни-

тельное лечение интерфероном, выздоровление произошло на семь дней раньше, чем у пациентов, получавших только стандартное лечение [8].

Стимулирование интерфероном рецепторов АПФ2 вызвало серьезные опасения по поводу безопасности их применения. Чтобы изучить связь между началом приема ИНФ и клиническими исходами было проведено многоцелевое исследование на 446 пациентах с COVID-19 в китайской провинции Хубэй. По результатам анализа установлено, что раннее введение (в течение 5 дней после поступления) ИНФ-а2b снижало показатели внутрибольничной смертности по сравнению с отсутствием приема ИНФ-а2b. Более позднее введение ИНФ-a2b приводило к повышению смертности [9]. Таким образом, применение ИНФa2b на ранней стадии COVID-19 может вызвать благоприятный клинический ответ.

Новые штаммы SARS-CoV-2, их чувствительность к интерферону

Постоянно мутируя, новый коронавирус научился подавлять систему интерферона на различных этапах ее работы. Для этого он использует более шести видов белков. Первая группа вирусных белков блокирует синтез ИНФ в клетках, вторая – мешает биохимическим процессам, которые происходят при стимуляции ИНФ, третья – подавляет выработку клетками противовирусных белков [10].

Появление мутаций SARS-CoV-2 с повышенной контагиозностью и способностью обходить иммунный ответ при низкой концентрации антител является большой проблемой для сдерживания пандемии COVID-19.

Степень восприимчивости иммунитета и активации системы интерферона на мутации SARS-CoV-2 отражено в исследованиях. Guo K. с соавторами сравнили эффективность реакции 17 человеческих интерферонов на пяти вирусных штаммах, отобранных в ходе глобальной вспышки COVID-19. Результаты показали повышенную рези-

стентность к ИНФ у мутированных вариантов SARS-CoV-2. Это указывает на то, что уклонение от врожденного иммунитета является важной движущей силой эволюции SARS-CoV-2, поэтому возможен индивидуальный подбор ИНФ для лечения пациентов с измененным штаммом вируса. По данным авторов, ИНФ ІІІ типа имеет самую большую противовирусную активность относительно всех исследуемых мутаций SARS-CoV-2 [10]. Поэтому именно ИНФ ІІІ типа обладает наибольшей эффективностью при профилактике и лечении COVID-19 даже с учетом новых мутаций вируса.

Выводы

Противовирусное действие эндогенного интерферона является мощным элементом защиты организма при заражении вирусом SARS-CoV-2, однако, новые мутации коронавируса резистентны к интерферону, поэтому в условиях пандемии рассчитывать только на силы иммунитета недостаточно.

Анализ использования экзогенного интерферона свидетельствует о положительных результатах в профилактике и лечении короновирусной инфекции, но есть определенные нюансы.

При подтверждении диагноза COVID-19 препараты ИНФ должны использоваться как можно раньше, чтобы активировать противовирусную систему организма и не допустить дальнейшего размножения вируса.

Интерфероны I и II типа активируют синтез АПФ2 в клетках верхних дыхательных путей, потенциально создавая новые порталы для проникновения вируса, тем самым усугубляя состояние больного.

Интерферон III типа эффективно активирует противовирусную защиту и не вызывает экспрессию генов АПФ2. Возможно поэтому, данные интерфероны показали самый лучший результат в тестировании с новыми мутациями SARS-CoV-2.

Раннее лечение интерфероном снижает смертность и ускоряет выздоровление, позднее – усугубляет заболевание. Вирус SARS-CoV-2 имеет механизмы подавления системы интерферона при заражении организма. Но если система интерферона была активирована за счет использования экзогенного ИНФ, то это запускает и усиливает иммунный ответ.

Обобщая вышеизложенное, можно сделать вывод, что препараты интерферона эффективны в условиях пандемии COVID-19 в целях профилактики и лечения. Эффективным средством борьбы с COVID-19 являются интерфероны III типа.

Литература/References

- 1 Shokri S, Mahmoudvand S, Taherkhani R, Farshadpour F. Modulation of the immune response by Middle East respiratory syndrome coronavirus. *J. Cell. Physiol.* 2019;234(3):2143-51. https://doi.org/10.1002/jcp.27155
- 2 Narovlyanskiy A.N. Classification and mechanisms of interferon Actions. In: Ershov F.I., ed. Jubilee Collection «Interferon 50 Years» [Yubileynyy sbornik «Interferonu 50 let»]. Moscow. 2007:44-50. (in Russ).
- 3 Busnadiego I, Fernbach S, Pohl MO, Karakus U, Huber M, Trkola A et al. Antiviral Activity of Type I, II, and III Interferons Counterbalances ACE2 Inducibility and Restricts SARS-CoV-2. *mBio.* 2020,Sep.10;11(5): e01928-20. https://doi.org/10.1128/mBio.01928-20 PMID: 32913009; PMCID: PMC7484541. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/32913009/
- 4 Vanderheiden A, Ralfs P, Chirkova T et al. Type I and Type III Interferons Restrict SARS-CoV-2 Infection of Human Airway Epithelial Cultures. *J Virol.* 2020, Sep.15;94(19): e00985-20. https://doi.org/10.1128/JVI.00985-20 PMID: 32699094; PMCID: PMC7495371. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/32699094/
- 5 Zhongji Meng, Tongyu Wang, Li Chen et al. An experimental trial of recombinant human interferon alpha nasal drops to prevent COVID-19 in medical staff in an epidemic area. https://doi.org/10.1101/2020.04.11.20061473
- 6 Felgenhauer U, Schoen A, Gad HH et al. Inhibition of SARS-CoV-2 by type I and type III interferons. *J Biol Chem.* 2020,Oct.9;295(41):13958-13964. https://doi.org/10.1074/jbc.AC120.013788. Epub 2020 Jun 25. PMID: 32587093; PMCID: PMC7549028. https://pubmed.ncbi.nlm.nih.gov/32587093/
- 8 Mordyk A.V., Ivanova O.G., Samsonov K.Yu. et al. Interferon alpha-2b in comprehensive treatment of patients with COVID-19. *Infekc. bolezni (Infectious diseases).* 2021;19(1):16-25. (In Russ). https://doi.org/10.20953/1729-9225-2021-1-16-25
- 9 Wang N, Zhan Y, Zhu L et al. Retrospective Multicenter Cohort Study Shows Early Interferon Therapy Is Associated with Favorable Clinical Responses in COVID-19 Patients. *Cell Host Microbe*. 2020, Sep. 9;28(3):455-464.e2. https://doi.org/10.1016/j.chom.2020.07.005 Epub 2020 Jul 18. PMID: 32707096; PMCID: PMC7368656. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/32707096/
- 10 Guo K, Barrett BS, Mickens KL, Hasenkrug KJ, Santiago ML. Interferon Resistance of Emerging SARS-CoV-2 Variants. *bioRxiv* [*Preprint*]. 2021, Mar.21:2021.03.20.436257. https://doi.org/10.1101/2021.03.20.436257 PMID: 33758840; PMCID: PMC7986999. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/33758840/

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов. **Competing interests.** The authors declare no competing interests.

Финансирование. Исследование проводилось без спонсорской поддержки. **Funding.** This research received no external funding.

Авторская справка Саидов Саидмурод Саидович

доктор медицинских наук, профессор, проректор по учебной и клинической работе, Медицинский университет «Реавиз», Москва, Россия ORCID 0000-0001-8986-9658

Вклад в статью 20 % – планирование работы, постановка задач

Ионов Станислав Николаевич профессор кафедры внутренних болезней, Медицинский университет «Реавиз»,

Москва, Россия

ORCID 0000-0002-6378-6974

Вклад в статью 20 % – поиск источников литературы, анализ данных

Саидов Аюбджон Саидович кандидат медицинских наук, доцент кафедры хирургических болезней,

Медицинский университет «Реавиз», Москва, Россия

ORCID 0000-0003-4147-5945

Вклад в статью 20 % – поиск источников литературы, анализ данных

Красовская Людмила Владимировна

Красовская Людмила кандидат технических наук, доцент, доцент кафедры естественнонаучных

дисциплин, Медицинский университет «Реавиз», Москва, Россия

Вклад в статью 20 % – поиск источников литературы, анализ данных

ORCID 0000-0002-9674-8384

Заботнов Алексей Владимирович студент 5 курса лечебного факультета, Медицинский университет «Реавиз»,

Москва, Россия

ORCID 0000-0002-2575-1551

Вклад в статью 20 % – поиск источников литературы, анализ данных