УДК 616.155

ОБЩИЕ ВОПРОСЫ МЕТАБОЛИЗМА ЖЕЛЕЗА И ПАТОГЕНЕЗА ЖЕЛЕЗОДЕФИЦИТНОЙ АНЕМИИ

Потемина Т.Е., Волкова С.А., Кузнецова С.В., Перешеин А.В.

ФГБОУ ВО «Приволжский исследовательский медицинский университет» Министерства здравоохранения Российской Федерации, Нижний Новгород

Резюме. Железо является незаменимым микроэлементом, так как оно требуется для адекватной эритропоэтической функции, окислительного метаболизма и клеточных иммунных реакций. Рассматриваются механизмы гомеостаза железа и патогенез железодефицитных состояний и железодефицитной анемии.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Финансирование. Исследование проводилось без спонсорской поддержки.

Ключевые слова: анемия, метаболизм железа, дефицит железа, патогенез, железодефицитная анемия.

Для цитирования: Потемина Т.Е., Волкова С.А., Кузнецова С.В., Перешеин А.В. Общие вопросы метаболизма железа и патогенеза железодефицитной анемии // Вестник медицинского института «Реавиз». – 2020. – № 3. – С. 125–137.

GENERAL ISSUES OF IRON METABOLISM AND PATHOGENESIS OF IRON DEFICIENCY ANEMIA

Potemina T.E., Volkova C.A., Kuznetsova S.V., Pereshein A.V.

Federal State Budgetary Institution of Higher Education 'Volga Region Research Medical University', Ministry of Health of the Russian Federation, Nizhny Novgorod

Abstract. Iron is an essential trace element, because it is required for adequate erythropoietic function, oxidative metabolism, and cellular immune responses. In this article, we analyze the mechanisms of iron homeostasis and pathogenesis of iron-deficiency conditions and iron-deficiency anemia.

Competing interests. The authors declare no competing interests.

Funding. The authors received no external funding for this work.

Key words: anemia, iron metabolism, iron deficiency, pathogenesis, iron-deficiency anemia.

To cite: Potemina T.E., Volkova C.A., Kuznetsova S.V., Pereshein A.V. General issues of iron metabolism and pathogenesis of iron deficiency anemia // Bulletin of Medical University Reaviz. – 2020. – № 3. – P. 125–137.

Введение

Дефицит железа (ДЖ), железодефицитные состояния (ЖДС) и железодефицитная анемия (ЖДА) остаются чрезвычайно актуальной проблемой во всем мире несмотря на достигнутый за последние 20 лет революционный прорыв в понимании механизмов метаболизма железа. Новый уровень сложности обусловлен увеличением числа состояний, связанных с измененным метаболизмом этого эссенциального микроэлемента. Другая проблема связана с диагностическим подходом и интерпретацией классических тестов. Kaĸ считает С. Camaschella [13], здесь неизбежно возникает множество вопросов: какие уровни снижения ферритина являются бесспорными показателями ДЖ; так ли необходимо тестирование растворимого рецептора трансферрина (sTrfR) или протопорфиринов цинка эритроцитов при ДЖ; нужны ли измерения уровня гепсидина сыворотки, и каким методом их следует оценивать; какова роль новых ретикулоцитарных или эритроцитарных индексов, таких как содержание гемоглобина в ретикулоцитах (РНС) или процент гипохромных эритроцитов (HRC); в каких случаях следует заподозрить генетическую форму ЖДА? Не меньше вопросов и относительно лечебной тактики: является ли пероральная терапия железом все еще актуальной; как быть с пациентами, которые ее не переносят; какова лучшая схема внутривенного введения железа (использование низких доз или однократная инъекция высокой дозы): следует ли лечить только ЖДА, или же следует начинать лечение раньше при ДЖ до развития анемии? Рекомендации могут различаться и часто не дают четких ответов.

Целью данной публикации является ознакомление с некоторыми современными данными о молекулярных механизмах, регулирующих клеточный и системный гомеостаз железа, их роли в патологических состояниях, связанных с изменениями его метаболизма, и, в частности, патогенезе железодефицитных состояний.

Биологическая роль железа

Важнейшим эссенциальным микроэлементом является железо, которое входит в состав ферментов и белков, участвующих в ключевых процессах жизнеобеспечения, включающих в себя: энергетический метаболизм, транспорт кислорода, клеточное дыхание, синтез ДНК и клеточное деление, окислительно-восстановительные реакции, детоксикацию ксенобиотиков, обеспечение неспецифической резистентности организма, образование и освобождение нейротрансмиттеров, синтез коллагена и др. Известна роль гемовых белков в процессинге микроРНК, регулирующих экспрессию многих генов, имеющих отношение к метаболизму железа (на транскрипционном и посттранскрипционном уровнях), а также к координации циркадных ритмов и обмена веществ [5, 16].

Железо в организме человека присутствует в форме неорганических (оксиды, соли) и органических (железосодержащие белки, низкомолекулярные органические комплексы) соединений. Его можно разделить на клеточное железо и внеклеточное, представленное в различных биологических жидкостях (кровь, лимфа, ликвор, интерстициальная жидкость и др.) [2].

Способность железа служить донором и акцептором электронов делает этот металл уникальным. Ионизированное железо в организме представлено двумя формами: восстановленное двухвалентное (Fe^{2+}) и окисленное трехвалентное (Fe³⁺). В водных средах Fe²⁺ самопроизвольно окисляется молекулярным кислородом до Fe³⁺ с образованием гидроксида железа (Fe(OH)₃). Следовательно, максимальная растворимость железа в окислительной среде, такой как внеклеточные жидкости, ограничена константой растворимости продукта $Fe(OH)_3$. При pH = 7,0 максимальная растворимость Fe³⁺ очень низкая, как растворимость Fe^{2+} намного выше. С другой стороны, когда поглощенное железо не связано с белками, оно способно катализировать реакции, в результате которых образуются свободные радикалы. Из-за токсичности свободного железа и его низ-кой растворимости в присутствии кислорода и в условиях нейтрального рН организмы были вынуждены вырабатывать белки (например, трансферрин), которые способны связывать Fe³⁺ и сохранять его стабильную форму, но, одновременно сделать его доступным для биологических процессов. Кроме того, плохая растворимость железа является важным химическим свойством, поскольку затрудняется доступ к железу патогенных микроорганизмов, что позволяет ограничить их распространение.

Большая часть железа является внутриклеточной, секвестрируется в запасных белках железа (ферритине и гемосидерине) или связана с белками в форме гема, который является общей простетической группой, состоящей из протопорфирина IX и иона Fe^{2+} . Включение Fe^{2+} в протопорфирин IX. катализируемое феррохелатазой в митохондриях, определяет конечную стадию пути биосинтеза гема. Впоследствии гем экспортируется в цитозоль для включения в гемопротеины. Микросомальные гем-оксигеназы 1 (hem oxygenases HO-1), 2 (HO-2) и 3 (HO-3) катализируют деградацию гема. Высвобожденный Fe²⁺ используется повторно. При этом образуется монооксид углерода, который, как считается, вовлечен в сигнальные пути, а также биливердин, который затем ферментативно превращается в антиоксидант билирубин [20].

Наиболее распространенные гемопротеины, гемоглобин и миоглобин, служат переносчиками кислорода. Связывание с кислородом опосредуется гемовыми фрагментами. Три четверти железа содержится в протопорфириновом комплексе гема, который является необходимым для переноса кислорода компонентом [4].

Другим важным классом гемопротеинов являются цитохромы, которые играют важную роль в окислительновосстановительных реакциях и переносе электронов.

Железо, служа кофактором или компонентом простетических групп ферментов, является частью каталитического участка активного центра фермента, способствует взаимодействию или образованию комплекса между субстратом и ферментом и выполняет функцию акцептора/донора для обеспечения электронно-транспортных, окислительно-восстановительных и свободнорадикальных процессов [2].

Железо-серные кластеры (например, 2Fe-2S. 3Fe-4S или 4Fe-4S) являются наиболее распространенными формами негемового железа В металлопротеинах. Они имеют широкий спектр функций, таких как перенос электронов (например, белки Риске – the Rieske proteins в комплексе III дыхательной цепи), структурная стабилизация (бактериальная эндонуклеаза III), регуляция транскрипции (бактериальные факторы транскрипции SoxR и FNR) и катализ (например, аконитаза, фермент цикла лимонной кислоты). Другие формы белка, ассоциированного с железом, могут включать железо-оксо-кластеры (например, в рибонуклеотидредуктазе, ферменте, необходимом для синтеза ДНК) или мононуклеарные центры железа (например, в циклооксигеназе и липоксигеназе, ферментах, участвующих в воспалительных реакциях).

Также известно, что негемовое железо играет важную роль в механизме восприятия кислорода через фактор, индуцируемый гипоксией (HIF). В нормоксических условиях HIF подвергается гидроксилированию, что делает его быстро разлагающимся по пути убиквитин-протеасома, в процессе, катализируемом железозависимыми ферментами. С другой стороны, в условиях гипоксии HIF стабилизируется и позволяет активировать гены, вовлеченные в ангиогенез, гликолиз, пролиферацию и выживание клеток, а также эритропоэз. Этот процесс чрезвычайно важен для клеточной адаптации к условиям низкого содержания кислорода [20].

Механизмы метаболизма и гомеостаза железа

Все клетки нуждаются в небольшом количестве железа; однако клетки эритрона требуют значительных количеств для синтеза гемоглобина. Соответственно, анемия является ярким проявлением дефицита железа. Три типа клеток особенно важны для поддержания гомеостаза железа: энтероциты двенадцатиперстной кишки, которые поглощают железо, гепатоциты, которые выполняют функцию депо (удаление избыточного железа из циркулирующей плазмы и безопасное его хранение до тех пор. пока оно не потребуется), и макрофаги тканей, которые распознают и фагоцитируют старые и/или поврежденные эритроциты, и извлекают их железо для повторного использования и хранения. Молекулярные сигналы координируют операции каждого из этих типов клеток. Не существует эффективного регулируемого механизма выведения железа, что подчеркивает важность тщательной регуляции усвоения и распределения железа. Поскольку избыточные уровни железа в тканях могут быть токсичными, усвоение железа ограничивается 1-2 мг ежедневно. Около 95 % железа (около 25 мг в день в норме) обеспечивается за счет переработки макрофагами, которые фагоцитируют стареющие эритроциты. Поглощение железа из его водорастворимых форм железа обратно пропорционально содержанию железа у человека [10].

В связи с оксигенацией атмосферы Земли более 2 миллиардов лет назад большое количество растворимого Fe²⁺ было окислено до нерастворимого Fe³⁺, что сделало биодоступное железо гораздо более дефицитным. В то же время железо стало потенциально более токсичным, поскольку окислительно-восстановительные превращения железа в присутствии кислорода и перекиси водорода катализируют образование свободных радикалов в реакции Фентона, которые могут повредить ДНК, белки и липиды. Это обосновывает возникновение специализированных ве-

ществ, которые жестко регулируют гомеостатические механизмы захвата, транспортировки, хранения и экспорта железа [16].

Гомеостаз железа должен быть точно настроен, чтобы избежать железодефицита, приводящего к уменьшению транспорта кислорода снижению активности Fe-зависимых ферментов, а также избытка железа, который может катализировать образование высокореактивных сильных радикалов, окислительный стресс и запрограммированную гибель клеток. Прогресс в понимании основных участников и механизмов регуляции железа наступил с момента открытия генов, ответственных за гемохроматоз, синтез железорегуляторного элемента и железорегуляторно-(IRE/IRP) и оси белка гепсидинферропортин [17].

После рождения, исключая экзогенные терапевтические источники, все железо поступает в организм из пищи. Несмотря на то, что в этом процессе участвует небольшое количество железа, его дефицит или избыток зависят в основном от алиментарного фактора.

Существует три основных пути регуляции: пищевой, накопления и эритропоэтический. Пищевой регулятор влияет на экспресдивалентного СИЮ мелаллотранспортера (DMT-1). Второй путь чувствителен к запасам железа в организме. Третий путь регуляции не реагирует на уровень железа в организме, а модулирует абсорбцию по интенсивности эритропоэза и при высокой его активности способен резко усилить всасывание железа. По современным представлениям, все три пути регуляции зависимы от пептидного гормона гепсидина, вырабатываемого гепатоцитами. Гепсидин является универсальным отрицательным регулятором метаболизма железа, влияющим не только на абсорбцию пищевого железа, но и на высвобождение его из макрофагов при рециклировании, то есть он осуществляет блокирование любого транспорта железа из разных клеток и тканей. Гепатоциты играют двойную роль в системном метаболизме железа: они являются основным местом хранения железа и секретируют гепсидин.

Основными железосвязывающими белками являются ферритин, трансферрин и лактоферрин. При избыточном депонировании железа ферритин теряет часть белка и превращается в нерастворимый гемосидерин [8, 9].

Негемовое железо широко содержится в продуктах животного и растительного происхождения и является доминирующей формой железа в растениях. Негемовое железо встречается в самых разнообразных формах и включает растворимое желе-30. Железо в низкомолекулярных комплексах, железо в ферритине и железо в каталитических центрах широкого спектра других белков. Большая часть этого железа не является сильно секвестрированной, и, следовательно, на его биодоступность может влиять целый ряд пищевых факторов и компонентов желудочного сока. Низкий рН желудка и проксимального отдела тонкой кишки помогает удерживать железо в растворимой форме, что делает его доступным для абсорбции. Такие органические кислоты как лимонная и аскорбиновая, также помогают сохранить негемовое железо в восстановленной и растворимой форме и могут значительно улучшить его абсорбцию. Другие пищевые компоненты, особенно фитаты, дубильные вещества и полифенолы растительного происхождения, могут связывать негемовое железо и препятствовать его усвоению. Напротив, гемовое железо плотно секвестируется в протопорфириновом кольце и недоступно для факторов, влияющих на негемовое железо. Как следствие, гемовое железо имеет тенденцию поглощаться более эффективно, и его всасывание в меньшей степени зависит от состава рациона. Большая часть гемового железа в рационе происходит от миоглобина и гемоглобина и является производным животного происхождения. Поглощение пищевого железа преимущественно осуществляется через эпителий двенадцатиперстной кишки, который организован в

ворсинчатые структуры, которые максимизируют площадь поглощающей поверхности. Клетки крипты кишечника являются по сути клетками - предшественниками, которые мигрируют вверх по ворсинчатой оси по мере их дифференцировки. Зрелые энтероциты живут всего 2-4 дня и каждое их поколение запрограммировано на текущую потребность организма в железе и, соответственно, порядок захвата железа остается неизменным в течение этого срока. Железо, которое накапливается в них. выводится из организма, когда стареющие энтероциты слущиваются и попадают в просвет кишечника. Чтобы перейти из кишечника в кровоток, железо должно пересечь как апикальную щеточную пограничную мембрану, так и базолатеральную мембрану энтероцитов. Большая часть пищевого железа находится в форме Fe³⁺. Таким образом, железо должно быть восстановлено, прежде чем оно может быть поглощено. На апикальной поверхности энтероцита при участии дуоденального цитохрома В (DcytB), являющегося ферриредуктазой, оно преобразуется в Fe²+и в качестве субстрата переносится в клетку с помощью DMT-1 и начинает свое перемещение к базолатеральной поверхности клетки. Захват железа DMT-1 осуществляется в соответствии с уровнем лабильного железа. Для ряда энтероцитспецифических белков, экспрессия которых разворачивается по мере созревания энтероцитов, ответственных за захват и доставку железа в кровоток, обнаружен реципрокный механизм трансляции при помощи взаимосвязанной протеиновой пары IRE и IRP, обратимо связывающихся в соответствующих иРНК. Так при низких запасах железа их взаимодействие стимулирует экспрессию трансферинового рецептора (TrfR) и соответственно всасывание железа в дуоденальной крипте. Если железо, содержащееся в энтероците, немедленно не востребовано организмом, оно секвестрируется в ферритине. Экспрессия ферритина также регулируется на уровне трансляции: при низком уровне железа *IRP* блокирует присоединение 43S-преинициирующего комплекса к 5'-региону иРНК, и поэтому уменьшается трансляция ферритина, и, соответственно, увеличивается мобилизация запасов железа. Наоборот, при высоком уровне клеточного железа трансляция иРНК ферритина увеличивается [3]. Общий эффект этих изменений заключается в создании условий для того, чтобы клетки обеспечивали соответствующий физиологический ответ на изменения внутриклеточной концентрации железа.

Таким образом, гомеостаз железа достигается за счет согласованной работы двух систем. Подача железа регулируется путем поддержания уровня железа в плазме в довольно узком диапазоне (системный гомеостаз железа). Отдельные клетки имеют возможность регулировать количество железа, которое они импортируют, и хранить любой избыток (клеточный гомеостаз железа). Почти две трети железа в организме находится в эритроидном отделе (циркулирующие эритроциты). Поэтому изменения в эритропоэзе оказывают доминирующее влияние на регуляцию всасывания, транспорта и хранения железа [2, 21].

Гемовое железо транспортируется в полости тонкого кишечника в энтероцит трансмембранным переносчиком HCP1/PCFT. локализованным в апикальной части плазмолеммы энтероцита, а также входящим в состав мембраны их эндосом. Считается, что часть гемового железа реабсорбируется в ходе эндоцитоза, а не только транслокацией гема через плазмолемму НСР1. Кроме того, гемовое железо может транспортироваться через плазмолемму после формирования комплекса с гемопексином, который распознается рецепторами гемопекси-CD91 поглощается на рецепторопосредованным экзоцитозом.

Особого внимания заслуживает *HFE* – трансмембранный белок, ответственный за ограничение абсорбции железа в кишечнике. *HFE* связывает *TrfR* с высокой аффинностью, близкой к трансферрину, тем са-

мым блокируя соединение трансферрина с *TrfR* и формирование эндосомы.

Перенос железа в плазму в соответствии с потребностями может быть осуществлен через базолатеральную мембрану энтероцитов через ферропортин (FPN), согласно своей функции появляющийся уже в зрелых энтероцитах. В этом транспорте принимает участие внутриклеточный аналог церулоплазмина — гефестин, который превращает Fe²⁺ в форму Fe³⁺ и тем самым обеспечивает присоединение Fe³⁺ к апотрансферрину, превращая последний в трансферрин, переносящий железо к клеткам-потребителям [19].

Железо для обеспечения гемопоэза поставляется, главным образом, за счет разрушения гемоглобина старых и поврежденных эритроцитов. В полости лизосомы макрофага железо освобождается из порфиринового кольца с помощью гемоксигеназы 1, с помощью переносчика NRAMP1 выходит в цитозоль, после чего может резервироваться апоферритином, либо экспортироваться в плазму крови.

Следующий этап метаболизма железа его потребление. Железо после выхода из энтероцита или макрофага связывается с трансферрином. Трансферрин является основным транспортным белком плазмы крови, обеспечивающим интернализацию железа в клетки и предохраняющим ткани организма от его токсического действия. Каждая молекула трансферрина может связывать до двух атомов железа. В норме только около 30 % сайтов связывания железа в пуле трансферрина плазмы заняты одновременно [т.е. насыщение трансферрина (TSAT) 30 %], обеспечивая тем самым значительную буферную способность против появления потенциально токсичных ионов железа, не связанных с трансферрином (NTBI). TSAT может служить показателем поступления железа в костный мозг, а TSAT менее чем на 16 % коррелирует с уменьшением продукции эритроцитов. Установлено прямое соотношение между насыщением трансферрина, уровнем несвязанного с трансферрином железа (NTBI) и поступлением железа в ткани.

Передача железа из трансферрина в клетку осуществляется с помощью *TrfR* – мембранного протеина, который связывается с трансферрином; образовавшийся комплекс погружается внутрь эндоплазматической везикулы – эндосомы; затем благодаря эндоцитозу эндосома окисляется Н+-АТФ, что позволяет Fe³⁺ освободиться и оказаться внутри клетки.

Костный мозг, печень и тонкий кишечник являются основными органами, обладающими системой специфичных тканевых рецепторов *TrfR*. Их количество максимально на плазмолемме клеток эритроидного ряда и уменьшается по мере их созревания (но они отсутствуют в мембране эритроцитов). Рецепторы трансферрина бывают двух типов: *TrfR* 1-го типа (*TrfRI*) экспрессируются практически на всех клетках, *TrfR* 2-го типа (*TrfRII*) представлены на энтероцитах, гепатоцитах, эритробластах и регулируют экспрессию гепсидина через взаимодействие с трансферрином и белком наследственного гемохроматоза (*HFE*).

Тот факт, что концентрации ферритина и *TfRI* варьируют в зависимости от содержания железа, имеет важное диагностическое значение. Концентрация ферритина в сыворотке отражает количество запасенного железа. Небольшие количества *TfRI* также могут присутствовать в сыворотке, поскольку внеклеточный домен белка может протеолитически расщепляться на плазматической мембране. Получающийся в результате растворимый *TfRI* пропорционален комплементу клеточной поверхности *TfRI* и является полезным показателем дефицита железа, поскольку концентрации *TfRI* повышаются при низких концентрациях железа.

Дальнейшая судьба железа, поступившего в клетку, зависит от ее потребностей. Если железо необходимо для метаболических функций, оно может перемещаться непосредственно в митохондрии. Митохондрии играют важную роль в метаболизме железа в клетке, так как обеспечивают синтез гема. Железо свободно проникает из цитозоля в межмембранное пространство через поры наружной митохондриальной мембраны в комплексе с низкомолекулярными или белковыми хелаторами, а также за счет объединения мембраны железосодержащих эндосом с наружной мембраной митохондрий (механизм kiss-and-run). Последний механизм очень распространен в гемоглобинсинтезирующих клетках красного костного мозга (например, ретикулоцитах). Для эритроидных клеток существует специфическое перемещение железа в митохондрии под действием феррохелатазы, которая «вставляет» Fe²⁺ в протопорфирин IX.

Если железо не требуется немедленно, оно может храниться «упакованным» в молекулы ферритина и гемосидерина, создающие депо железа. Оно может быть выделено из ферритина для последующего использования по мере необходимости и транспортироваться в места биосинтеза.

Соединения железа в клетке, отличающиеся строением и обладающие характерной функциональной активностью можно разделить на четыре группы: гемопротеины, негемовые железосодержащие ферменты, железо-связывающие белки, низкомолекулярные (неорганические и небелковые органические) соединения железа [2, 8, 10].

Системный гомеостаз железа зависит от регуляции скорости доставки железа к циркулирующему трансферрину. Это достигается путем корректировки количества ферропортина на клеточных мембранах за счет действия циркулирующего гепсидина. Гепсидин связывается с ферропортином, вызывая убихинирование, интернализацию и деградацию комплекса. Таким образом, гепсидин является центральным регулятором, который контролирует абсорбцию железа, его рециркуляцию и объем депо железа у взрослых и детей старше 6 месяцев [11].

Если нарушен гомеостатический баланс железа, результатом будут два основных класса заболеваний: при дефиците – анемия, при избытке - гемохроматоз. Повышенные уровни гепсидина, приводящие к сни-

жению экспрессии ферропортина, будут задерживать железо в энтероцитах, гепатоцитах и макрофагах. Это состояния, которые преобладают при анемии хронических заболеваний и при железо-резистентной железодефицитной анемии [15].

Дефицит железа

Одной из основных форм микроэлементоза с нарушением обмена железа в сторону снижения является гипосидероз (железодефицит, сидеропения). Синдром дефицита железа характеризуется снижением (отсутствием) мобилизуемых запасов микроэлемента в сочетании с признаками нарушения обеспечения железом тканей и органов, включая эритрон, и представлен заболеваниями и патологическими процессами, обусловленными дефицитом железа в организме.

Наиболее значимыми медикосоциальными последствиями ферродефицита считают нарушения познавательных способностей, интеллектуального, психомоторного и физического развития детей, а также снижение иммунного статуса и работоспособности у лиц разных возрастных групп. Гипосидероз является следствием длительного отрицательного баланса железа и проходит этапы от нормального состояния обмена микроэлемента с его запасами разной величины до железодефицита без анемии и, наконец, до дефицита железа с анемией.

Около 50 % анемий возникают из-за дефицита железа в организме, а 42 % – из-за воспаления и инфекции. Оставшиеся 8 % аномий развиваются из-за дефицита таких веществ как витамин A, витамин B₁₂, фолат, рибофлавин, медь или вызваны генетическими дефектами [15].

Таким образом, железодефицитная анемия относится к числу поздних клиникоморфологических проявлений гипосидероза. ЖДА приобрела статус не только вполне самостоятельной научно-практической и медико-социальной проблемы, но и нередко отождествляется с железодефицитным состоянием в целом [5].

ДЖ встречается в двух основных формах: абсолютной и функциональной. Абсолютный ДЖ возникает, когда общие запасы железа в организме низкие или истощены, может возникнуть в случаях повышенной потребности, снижения потребления, уменьшения или нарушения всасывания или хронической кровопотери. Функциональный ДЖ – это расстройство, при котором общие запасы железа в организме нормальные или увеличены, но запас железа в костном мозге недостаточен. Он может развиваться по двум основным сценариям: 1) железо практически не мобилизуется из запасов в кровообращение и эритропоэтическую ткань вследствие хронического воспаления и повышенного уровня гепсидина, например, у пациентов с хроническими заболеваниями почек, хронической сердечной недостаточностью, воспалительными заболеваниями кишечника, хроническими заболеваниями легких, опухолями, ожирением, аутоиммунными заболеваниями и хроническими инфекционными процессами; 2) активация эритропоэза, опосредованная либо продукцией эндогенного эритропоэтина в ответ на анемию, либо терапией стимулирующими эритропоэз агентами (ESA), такими как витамины B₉ и B₁₂, препараты рекомбинантного человеческого эритропоэтина (рч-ЭПО), создающими несоответствие между потребностью в железе и его наличием. Абсолютный и функциональный дефициты железа могут сочетаться [14, 18].

Выделяют несколько стадий ДЖ: предрасположенность (при наличии факторов риска), субклинический ДЖ (при снижении запасов железа в организме) и клинически выраженные стадии. Клинически выраженные стадии ДЖ – это латентный дефицит железа (ЛДЖ) и ЖДА, когда снижается концентрация гемоглобина (Нb). На этих стадиях выявляются изменения в анализах крови и появляются сидеропенические (при ЛДЖ и ЖДА) и анемические симптомы (только при ЖДА).

Наиболее часто в клинике внутренних болезней имеет место сочетание железо-

дефицитной анемии и анемии хронических заболеваний [7].

Этиология железодефицита

Существует множество физиологических, экологических, патологических и генетических причин дефицита железа, которые приводят к ЖДА. Возможно сочетание нескольких причин в разных группах пациентов (дети, женщины и пожилые люди), географических регионах (развивающиеся и развитые страны) и конкретных клинических условиях [13].

Все причины обычно подразделяются на следующие категории: увеличение потребности в железе, снижение потребления, уменьшение поглощения и возросшие потери [20]. В частности, в кратком перечислении возможных причин, дефицит железа может быть вызван повышенной потребностью в железе в период быстрого роста у детей, во время беременности, лактации, недостаточным усвоением железа из-за дефицита питательных веществ, мальабсорбции (например, при целиакии, резекции желудка/кишечника, колонизации Helicobacter pylori), кровопотерей (например, вследствие гинекологических заболеваний или желудочно-кишечных кровотечений из-за наличия паразитов, язв, злокачественных новообразований, действия аспирина и других НПВС) [16].

Другие формы микроцитарных анемий

В последние годы, с выявлением нескольких новых белков, участвующих в обмене и регуляции железа, были выявлены новые формы микроцитарной анемии, которые могут быть определены как «атипичные», поскольку они отличаются от классической ЖДА или от классической формы, сцепленной с X-хромосомой, сидеробластной анемии, вызванной мутациями ALAS2 гена, который кодирует первый фермент биосинтетического пути эритроидного гема-дельта-амино-левулиновой кислотысинтазу-2 (ALAS2). Эти атипичные микроци-

тарные анемии могут быть классифицированы как дефекты: (1) всасывания железа в кишечнике, (2) цикла рецептора трансферрина, которые изменяют поглощение железа эритробластами, (3) утилизации митохондриального железа для синтеза гема или кластера серы и железа, (4) переработки железа [12].

Анемии, вызванные генетическими дефектами, представляют собой большую группу редких гетерогенных заболеваний. В их числе анемии, возникающие в результате мутаций в генах, которые контролируют абсорбцию железа в двенадцатиперстной кишке (например, *SLC11A2*), системный гомеостаз железа (например, *TMPRSS6*) или абсорбцию и утилизацию железа клетками эритроидного ряда [5, 18].

Эпидемиология ЖДА

В мире железодефицитная анемия является наиболее распространенным следствием нарушения питания. По оценкам Всемирной организации здравоохранения глобальная распространенность анемии (определяемой как уровень гемоглобина ниже рекомендуемых пороговых значений) составляет 24,8 %, что соответствует 1,62 миллиарда человек. Распространенность анемии в самых «уязвимых» группах (группах риска) составляет 47,4 % у детей дошкольного возраста, 41,8 % у беременных женщин и 30,2 % у небеременных женщин [15].

Железодефицитные состояния встречаются почти у половины населения земного шара. Среди всех анемий от 70 до 90 % составляют анемии вследствие ДЖ. По данным ВОЗ железодефицитная анемия занимает ведущее место среди 38 наиболее распространенных заболеваний человека [1, 7].

Клинико-морфологические проявления

Дефицит железа и, в конечном счете, анемия развиваются в несколько этапов, которые можно оценить путем измерения ряда биохимических показателей. Имеет место по-

следовательное истощение железа в разных отделах, указывающее на определенную его степень, вместе с соответствующими изменениями в параметрах, связанных с железом.

На этапе предлатентного дефицита железа, во время которого будут мобилизованы все запасы железа, имеются данные о дефиците железа без анемии; то есть уровни гемоглобина и некоторые другие лабораторные показатели останутся в пределах нормы, хотя концентрация ферритина в сыворотке и запасы железа в костном мозге (ферритин и гемосидерин) будут постепенно уменьшаться. Из-за более высокой потребности в продукции гемоглобина всасывание железа уже может увеличиться, и возможно признаков «функционального появление дефицита железа», таких как повышение уровня протопорфирина цинка.

Второй этап, железодефицитный эритропоэз (латентный дефицит железа), соответствует истощению запасов железа, так что недостаток железа ограничивает выработку гемоглобина и других железосодержащих белков. Концентрация гемоглобина все еще в норме (поскольку изменения недостаточны для выявления стандартными клиническими методами). Тем не менее, другие диагностические критерии дефицита железа легко узнаваемы, а именно: снижение уровня ферритина, уровня железа, высокий уровень трансферрина в сыворотке (и, как следствие, снижение насыщения трансферрина) и повышение уровня растворимого рецептора трансферрина в плазме.

На третьем этапе железодефицитной анемии концентрация гемоглобина снижается. Первоначально средний объем эритроцита (МСV) и среднее содержание гемоглобина в эритроцитах (МСН) все еще в норме. При хроническом течении процесса с дальнейшим снижением гемоглобина МСV и МСН могут стать очень низкими, вместе с появлением патологических эритробластов в костном мозге и патологической морфологии эритроцитов в периферической крови. Постоянный дефицит железа может серьезно повлиять на выработку гемоглобина,

в то время как воздействие на мышечный миоглобин менее выражено.

Функциональный дефицит железа возникает, когда эритропоэз стимулируется рекомбинантным эритропоэтином, и железо не может быть мобилизовано из депо достаточно быстро, чтобы соответствовать возросшей потребности костного мозга.

Можно выделить две основные категории лабораторных показателей для выявления дефицита железа: точные измерения, которые оценивают состояние железа в тканях, и методы скрининга, которые обнаруживают железодефицитный эритропоэз. Оптимальный диагностический подход заключается в измерении сывороточного ферритина (SF) как индекса запасов железа и рецептора трансферрина сыворотки в качестве суррогатного маркера запасов железа в костном мозге и, следовательно, железодефицитного эритропоэза.

Сывороточный ферритин является широко доступным и хорошо стандартизированным параметром, который оказался единственным наиболее надежным показателем статуса железа, а низкий SF является диагностическим признаком ЖДА. У здоровых людей SF пропорционально запасам железа в организме: 1 мкг/л SF соответствует 8-10 мг железа в организме или 120 мкг депонированного железа на кг массы тела. Тем не менее, ферритин – белок острой фазы, и при остром или хроническом воспалении уровень SF увеличивается независимо от статуса железа. Различие между анемией хронических заболеваний и ЖДА затруднено, поскольку повышенная концентрация SF сама по себе не исключает ЖДА при воспалении. Поэтому целесообразно особенно при обследованиях в развивающихся странах с высокой частотой инфекций - включать маркер воспаления, например, такой как С-реактивный белок.

Исследования насыщения трансферрина отражают баланс железа, поступающего в пул и выходящего из него, и как только это значение падает ниже 15 %, явно присутствует железодефицитный

эритропоэз. Однако, несмотря на преимущество низкой стоимости и широкой доступности, насыщение трансферрина имеет заметные суточные колебания и зависит от целого ряда клинических расстройств [15].

Большинство симптомов и признаков железодефицитной анемии неспецифичны. Клиническая картина ЖДА складывается из двух основных синдромов: анемического и сидеропенического. Клинические проявления анемии можно принципиально разделить на симптомы, связанные непосредственно с гипоксией (слабость, повышенная утомляемость, головная боль, головокружение, появление «мушек» перед глазами, чувство нехватки воздуха), и компенсаторные симптомы (бледность кожных покровов, тахикардия, одышка, проявления сердечно-сосудистой недостаточности) [7]. Сидеропенический синдром, обусловленный тканевым дефицитом железа, приводит к снижению активности многих ферментов, в состав которых входит железо (цитохромоксидазы, пероксидазы, сукцинатдегидрогеназы и др.), и появлению характерных симптомов - извращению вкуса (pica chlorotica) и обоняния, снижению мышечной силы в связи с дефицитом миоглобина и ферментов тканевого дыхания, сухости кожи, истончению, ломкости и поперечной исчерченности ногтей, койлонихиям, ангулярному стоматиту, глосситу, а также к атрофическим изменениям слизистой оболочки пищевода (сидеропеническая дисфагия), желудка и кишечника (атрофический гастрит, энтерит) [6].

Диагностика

Поскольку точный диагноз ЖДА не может быть поставлен только по признакам и симптомам, традиционные лабораторные измерения и результаты будут определять состояние железа, дефицит железа и связанные с ним состояния и они хорошо известны. Диагноз ЖДА может быть легко установлен путем оценки уровня гемоглобина и сывороточного ферритина. По данным ВОЗ, анемия определяется при уровне гемоглобина менее

130 г/л у мужчин, менее 120 г/л у небеременных женщин и менее 110 г/л при беременности. Конкретные пороговые величины гемоглобина на разных этапах детства также широко используются в педиатрии при диагностике анемии. Стоит отметить, что существует минимальное количество данных, подтверждающих пороговые значения гемоглобина для определения анемии.

Уровень ферритина в сыворотке крови является наиболее специфичным и эффективным тестом, отражающим общие запасы железа в организме, и является общедоступным «золотым» стандартом. Низкая концентрация ферритина в сыворотке действительно свидетельствует об истощении железа, однако существуют значительные различия в пороговых значениях ферритина в сыворотке. Обычно принимаемый во внимание порог в 15 мкг/л, вероятно, является специфическим, но можно ожидать, что до половины случаев дефицита железа будет пропущено. С другой стороны, при пороговом значении концентрации ферритина в сыворотке 30 мкг/л будет устанавливаться много ложноположительных диагнозов. При наличии воспаления интерпретация уровня ферритина в сыворотке является более сложной. Во-первых, ферритин в форме апоферритина является участником ответа острой фазы, который повышается при воспалении. Во-вторых, при хронических воспалительных состояниях увеличение концентрации гепсидина приводит к секвестрации железа в макрофагах. Это отражается на нормальном или даже повышенном уровне ферритина в сыворотке, несмотря на снижение поступления железа в кровь. Рекомендованным является использование уровня ферритина в сыворотке крови ниже 100 мкг/л для диагностики ЖД при хронических воспалительных состояниях. Это пороговое значение также обычно рекомендуется принимать во внимание у пожилых людей и у пациентов в послеоперационном периоде.

Для диагностики ЖД обычно используется насыщение трансферрина менее 16 %,

а при наличии воспаления его более высокое пороговое значение 20 %.

При ЖДА эритроциты являются микроцитарными и гипохромными, о чем свидетельствуют низкие MCV и MCH и увеличенная ширина распределения эритроцитов (RDW). Тем не менее, изменения в показателях эритроцитов происходят поздно при развитии ЖДА ввиду продолжительности жизни эритроцитов, и полезность этих тестов может быть ограничена. Содержание гемоглобина в ретикулоцитах (РНС) указывает на количество железа, доступного для эритропоэза в предыдущие 3-4 дня, и является ранним показателем ЖД. Процент гипохромных эритроцитов (% HRC) также отражает недавнее снижение содержания железа, однако ценность этих тестов при длительной ЖДА ограничена, и они не имеют широкого применения в клинической практике для диагностики ЖДА.

Уровень sTrfR повышается при ЖД (в том числе при нормергическом или гипоергическом воспалении). Мета-анализ показал высокую чувствительность (86 %) и специфичность (75 %) для sTrfR в диагностике ЖД, но он оставался ниже, чем у сывороточного ферритина. Соотношение между sTrfR и log-ферритином (индекс sTrfR — ферритин) может помочь распознать ЖДА при хроническом воспалении, хотя отсутствие стандартизации доступных анализов

ограничивает широкое использование в клинической практике.

Уровень гепсидина снижается или не определяется при ЖДА, но на него влияет ряд факторов, таких как циркадный ритм, функции печени и почек. Несмотря на то, что наблюдается корреляция между различными методами оценки уровня гепсидина, они все еще не имеют широкого применения в клинической практике [14].

Заключение

Железо является незаменимым микроэлементом, так как оно требуется для адекватной эритропоэтической функции, окислительного метаболизма и клеточных иммунных реакций. Повышенные потребности в железе, ограниченное поступление и потери этого эссенциального микроэлемента могут привести к дефициту железа и железодефицитной анемии, которая остается глобальной проблемой здравоохранения. Достигнутый несомненный прогресс в понимании основных участников и механизмов, задействованных в регуляции метаболизма и гомеостаза железа, повышение осведомленности об этиологии и патогенезе состояний, связанных с их нарушениями, может помочь в их раннем выявлении и в выборе правильного лечебнодиагностического алгоритма.

Литература / References

- 1 Andreichev N.A., Baleeva L.V. Zhelezodeficitnye sostoyaniya i zhelezodeficitnaya anemiya // Vest-nik sov-remennoj klinicheskoj mediciny. 2009. T. 2. № 3. S. 60–65.
- 2 Molekulyarnye i kletochnye osnovy metabolizma zheleza u cheloveka (obzor) / I.V. Milto, I.V. Suhodolo, V.D. Prokopeva i dr. // Biohimiva. 2016. T. 81. № 6. S. 725–742.
- 3 Patologicheskaya biohimiya / A.D. Taganovich, E.I. Oleckij, I.L. Kotovich. M.: Binom, 2013. 448 s.
- 4 Patofiziologiya mikroelementov. Soobshenie 3. Zhelezo / D. Oberlis, A.V. Skalnyj, M.G. Skal-naya i dr. // Patogenez. 2016. T.14. № 2. C. 20–27.
- 5 Smirnov O.A., Smirnova O.N. Giposideroz kak forma mikroelementoza s narusheniem obmena zhe-leza // Mikroelementy v medicine. 2019. № 20 (3). S. 12–19.
- 6 Strutynskij A.V. Zhelezodeficitnye anemii. Diagnostika i lechenie // Trudnyj pacient. 2013. № 12. T. 11. C. 38–42.
- 7 Stuklov N.I., Mitchenkova A.A. Anemiya i deficit zheleza. Globalnye problemy i algoritmy re-shenij // Terapiya. 2018. № 6 (24). S. 147–156.
- 8 Cvetaeva N.V., Levina A.A., Mamukova Yu.I. Osnovy regulyacii obmena zheleza // Klinicheskaya onkogematologiya. 2010. T. 3. № 3. S. 278–283.

- 9 Anderson Gregory J., Frazer David M. Current understanding of iron homeostasis // The American Journal of Clinical Nutrition. 2017. V. 106 (Suppl 6). 1559S–1566S. DOI: 10.3945/ajcn.117.155804
- 10 Besarab A., Hemmerich S. Iron-Deficiency Anemia // Management of Anemia A Comprehensive Guide for Clinicians. 2018. P. 11–29.
- 11 Biomarkers of Nutrition for Development (BOND) Iron Review / Sean Lynch, Christine M Pfeiffer, Michael K Georgieff and al. // The Journal of Nutrition. 2018. V. 148(suppl_1):1001S–1067S.
- 12 Camaschella C. How I manage patients with atypical microcytic anaemia // British Journal of Haematology. 2012. V. 160. P. 12–24.
- 13 Camaschella C. New insights into iron deficiency and iron deficiency anemia // Blood Reviews. 2017. 31 (4). P. 225–233.
- 14 Cappellini M.D., Musallam K.M., Taher A.T. Iron deficiency anaemia revisited // The Association for the Publication of the Journal of Internal Medicine. 2020. V. 287. P. 153–170.
- 15 Crichton R. Iron Metabolism. From Molecular Mechanisms to Clinical Consequences. Wiley. 2016. P. 556.
- 16 Dev S., Jodie L. Babitt Overview of Iron Metabolism in Health and Disease // Hemodial Int. 2017. V. 21 (Suppl 1): S6-S20. DOI:10.1111/hdi.12542
- 17 Gozzelino R., Arosio P. Iron Homeostasis in Health and Disease // Int. J. Mol. Sci. 2016. V. 17(1), 130; DOI:10.3390/ijms17010130
- 18 Lopez A., Cacoub P., Macdougall I.C., Peyrin-Biroulet L. Iron defi ciency anaemia // Lancet. 2016. V. 387. P. 907–916.
- 19 Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches / K. Shubham, T. Anukiruthika, S. Dutta and al. // Trends in Food Science & Technology. 2020. V. 99. P. 58–75.
- 20 Oliveira F., Rocha S., Fernandes R. Iron Metabolism: From Health to Disease // Journal of Clinical Laboratory Analysis. 2014. V. 28 N. 3. P. 210–218.
- 21 Two to Tango Regulation of Mammalian Iron Metabolism / Matthias W. Hentze, Martina U. Muckenthaler, Bruno Galy, Clara Camaschella // Cell. 2010. № 142. P. 24–38.

Авторская справка

Потемина Татьяна Евгеньевна

доктор медицинских наук, профессор, заведующийкафедрой патологической физиологии, ФГБОУ ВО «Приволжский исследовательский медицинский университет» Министерства здравоохранения Российской Федерации, Нижний Новгород, Россия

e-mail: tat_potemina@mail.ru

Волкова Светлана Александровна

кандидат медицинских наук, доцент кафедры госпитальной терапии и общей врачебной практики им. В.Г. Вогралика, ФГБОУ ВО «Приволжский исследовательский медицинский университет» Министерства здравоохране-

ния Российской Федерации, Нижний Новгород, Россия

e-mail: vsvetl@gmail.com

Кузнецова Светлана Владимировна

кандидат медицинских наук, доцент кафедры патологической физиологии ФГБОУ ВО «Приволжский исследовательский медицинский университет» Министерства здравоохранения Российской Федерации, Нижний Новгород,

e-mail: ksv05@list.ru

Перешеин Андрей Владимирович

пссистент кафедры патологической физиологии, ФГБОУ ВО «Приволжский исследовательский медицинский университет» Министерства здравоохранения Российской Федерации, Нижний Новгород, Россия

e-mail: extern-group@yandex.ru

Статья поступила 17.05.2020 Одобрена после рецензирования 31.05.2020 Принята в печать 13.06.2020 Received May, 17th 2020 Approwed after reviewing May, 31st 2020 Accepted for publication June, 13th 2020