Modern issues of surgical anatomy of the ligamentary apparatus and metatarsal bones of the human foot
https://doi.org/10.20340/vmi-rvz.2024.3.MORPH.3
Abstract
The article presents an analysis of scientific literature devoted to the study of surgical anatomy of the ligamentous apparatus and metatarsal bones of the human foot. The literature covers the issues of macroanatomy and histology of the ligaments and metatarsal bones of the foot quite fully. At the same time, issues related to the same shape and size of bones, the relative position of ligaments, their histotopographic features are contradictory, which is associated with high variability, individual and age variability in combination with a number of social factors and features of the regions of residence. The work shows that at present, the data of domestic and foreign scientific literature on the anatomy and topography of the bones and ligaments of the metatarsal bones of the human foot are presented either by sectional studies or by the results of clinical observations using diagnostic equipment. The existing studies do not provide a comprehensive picture of the surgical anatomy of the ligamentous apparatus and metatarsal bones of the human foot. The article reflects the need for widespread use in fundamental anatomical studies of ligaments and metatarsal bones using the histotopographic method of research, quantitative and qualitative assessment of morphological parameters, which open up new possibilities for diagnosing pathological processes and developing new surgical techniques.
About the Authors
D. V. DukovRussian Federation
Denis V. Dukov - Assistant of the Department of Forensic Medicine of the Institute of Professional Education, candidate of the Department of Operative Surgery and Topographic Anatomy
Author's contribution: developing an idea, writing an article.
1 Partizan Zheleznyak str., Krasnoyarsk, 660022
Competing Interests:
The author declare no competing interests.
A. N. Russkikh
Russian Federation
Andrey N. Russkikh - Dr. Sci. (Med.), Docent, Head of the Department of Operative Surgery and Topographic Anatomy
Author's contribution: developing an idea, writing an article.
1 Partizan Zheleznyak str., Krasnoyarsk, 660022
Competing Interests:
The author declare no competing interests.
A. D. Shabokha
Russian Federation
Anna D. Shabokha - Cand. Sci. (Med.), Associate Professor of the Department of Operative Surgery and Topographic Anatomy.
Author's contribution: developing an idea, writing an article.
1 Partizan Zheleznyak str., Krasnoyarsk, 660022
Competing Interests:
The author declare no competing interests.
F. V. Alyab'ev
Russian Federation
Fyodor V. Alyab'ev - Dr. Sci. (Med.), Professor, Head of the Department of Forensic Medicine, IPO.
Author's contribution: developing an idea, writing an article.
1 Partizan Zheleznyak str., Krasnoyarsk, 660022
Competing Interests:
The author declare no competing interests.
A. F. Makarov
Russian Federation
Makarov Alexander Fedorovich - Cand. Sci. (Med.), orthopedic traumatologist
Author's contribution: developing an idea, writing an article.
93 Mira Ave., Krasnoyarsk, 660017
Competing Interests:
The author declare no competing interests.
References
1. Sinelnikov R.D., Sinelnikov Ya.R., Sinelnikov A.Ya. Atlas of human anatomy: a textbook. In 4 vols. Vol. 1. The doctrine of bones, joints of bones and muscles; ed. by A.G. Tsybulkin. 8th ed., reprint. Moscow: New Wave: Publisher Umerenkov. 2018: 488. (In Russ).
2. Logan Barry M. Anatomy of the ankle and foot. Mamin's color Atlas / translated from English; edited by N.A. Pinion. Moscow: Panfilov Publishing House; BINOM. Laboratory of Knowledge. 2014: 152. (In Russ).
3. Won H.J., Oh C.S. Classification of the interosseous tarsometatarsal ligaments of the foot. Foot Ankle Surg. 2022;28(1):72-78. https://doi.org/10.1016/j.fas.2021.01.010
4. Mason L., Jayatilaka M., Fisher A., Fisher L., Swanton E., Molloy A. Anatomy of the Lateral Plantar Ligaments of the Transverse Metatarsal Arch. Foot Ankle Int. 2020;41(1):109-114. https://doi.org/10.1177/1071100719873971
5. Chiodo C.P., Myerson M.S. Developments and advances in the diagnosis and treatment of injuries to the tarsometatarsal joint. Orthop Clin North Am. 2001;32(1):11-20.
6. Schepers T., Rammelt S. Classifying the Lisfranc injury: literature overview and a new classification. FussSprungg. 2018;16:151-159.
7. Ker R.F., Bennett M.B., Bibby S.R., Kester R.C., Alexander R.M. The spring in the arch of the human foot. Nature. 1987;325(7000):147-149.
8. Largey A., Bonnel F., Canovas F., Subsol G., Chemouny S., Banegas F. Three-dimensional analysis of the intrinsic anatomy of the metatarsal bones. J Foot Ankle Surg. 2007 Nov-Dec;46(6):434-41. https://doi.org/10.1053/j.jfas.2007.08.003
9. Griffin N.L., D'Août K., Ryan T.M., Richmond B.G., Ketcham R.A., Postnov A. Comparative forefoot trabecular bone architecture in extant hominids. J Hum Evol. 2010;59(2):202-13. https://doi.org/10.1016/j.jhevol.2010.06.00
10. Apostolakos J., Durant Т., Dwyer С., Russell R. et al. The enthesis: a review of the tendon-to-bone insertion. Muscles Ligaments Tendons J. 2014;4(3):333-342.
11. Benjamin М., McGonagle D. Entheses: tendon and ligament attachment sites. Scand. J. Med. Sci. Sports. 2009;19:520-527. https://doi.org/10.1111/j.1600-0838.2009.00906.x
12. Maas N.M.G., Grinten M., Bramer W.M., Kleinrensink G.-J. Metatarsophalangeal joint stability: a systematic review on the plantar plate of the lesser toes. J. Foot Ankle Res. 2016;9:32. https://doi.org/10.1186/s13047-016-0165-2
13. Deland J.T., Lee K.T., Sobel M., DiCarlo E.F. Anatomy of the plantar plate and its attachments in the lesser metatarsal phalangeal joint. Foot Ankle Int. 1995;16(8):480-6. https://doi.org/10.1177/107110079501600804
14. Johnston 3rd R.B., Smith J., Daniels T. The plantar plate of the lesser toes: An anatomical study in human cadavers. Foot Ankle Int. 1994;15(5):276-82. https://doi.org/10.1177/107110079401500508
15. Benjamin M., Kaiser E., Milz S. Structure-function relationships in tendons: a review. J. Anat. 2008;2123):211-228. https://doi.org/10.1111/j.1469-7580.2008.00864.x
16. Kabel J., van Rietbergen B., Odgaard A., Huiskes R. Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone. 1999;25(4):481-6. https://doi.org/10.1016/s8756-3282(99)00190-8
17. Griffin N.L. Bone architecture of the hominin second proximal pedal phalanx: a preliminary investigation. J. Hum Evol. 2008;54(1):162-8. https://doi.org/10.1016/j.jhevol.2007.09.008.
18. Susman R.L., De Ruiter D.J. New hominin first metatarsal (SK 1813) from Swartkrans. J Hum Evol. 2004;47(3):171-81. https://doi.org/10.1016/j.jhevol.2004.06.005
19. Ryan T.M., Krovitz G.E. Trabecular bone ontogeny in the human proximal femur. J Hum Evol. 2006;51(6):591-602. https://doi.org/10.1016/j.jhevol.2006.06.004
20. Liu Y., Antonijević D., Li R., Fan Y., Dukić K., Mićić M., Yu G., Li Z., Djurić M., Fan Y. Study of Sexual Dimorphism in Metatarsal Bones: Geometric and Inertial Analysis of the Three-Dimensional Reconstructed Models. Front Endocrinol (Lausanne). 2021;12:734362. https://doi.org/10.3389/fendo.2021.734362
21. Miranker M. A Comparison of Different Age Estimation Methods of the Adult Pelvis. J Forensic Sci. 2016;61(5):1173–79. https://doi.org/10.1111/1556-4029.13130
22. Johnstone-Belford E., Flavel A., Franklin D. Morphoscopic Observations in Clinical Pelvic MDCT Scans: Assessing the Accuracy of the Phenice Traits for Sex Estimation in a Western Australian Population. J Forensic Radiol Imaging. 2018;12(1–3):5–10. https://doi.org/10.1016/j.jofri.2018.02.003
23. Dutta P., Bhosale S., Singh R., Gubrellay P., Patil J., Sehdev B., et al. Amelogenin Gene-the Pioneer in Gender Determination From Forensic Dental Samples. J Clin Diagn Res. 2017;11(2): 56. https://doi.org/10.7860/JCDR/2017/22183.9407
24. Frayer D.W., Wolpoff M.H. Sexual Dimorphism. Annu Rev Anthropol. 1985;14(1):429–73. https://doi.org/10.1146/annurev.an.14.100185.002241
25. Ruff C. Sexual Dimorphism in Human Lower Limb Bone Structure: Relationship to Subsistence Strategy and Sexual Division of Labor. J Hum Evol. 1987;16(5):391–416. https://doi.org/10.1016/0047-2484(87)90069-8
26. Arsuaga J.L., Carretero J.M. Multivariate Analysis of the Sexual Dimorphism of the Hip Bone in a Modern Human Population and in Early Hominids. Am J Phys Anthropol. 1994; 93(2):241–57. https://doi.org/10.1002/ajpa.1330930208
27. Bruzek J. A Method for Visual Determination of Sex, Using the Human Hip Bone. Am J Phys Anthropol. 2002;117(2):157–68. https://doi.org/10.1002/ajpa.10012
28. Case D.T., Ross A.H. Sex Determination From Hand and Foot Bone Lengths. J Forensic Sci. 2007;52(2):264–70. https://doi.org/10.1111/j.1556-4029.2006.00365.x
29. Charisi D., Eliopoulos C., Vanna V., Koilias C.G., Manolis S.K. Sexual Dimorphism of the Arm Bones in a Modern Greek Population. J Forensic Sci. 2011;56(1):10–8. https://doi.org/10.1111/j.1556-4029.2010.01538.x
30. Trinkaus E., Churchill S.E., Ruff C.B., Vandermeersch B. Long Bone Shaft Robusticity and Body Proportions of the Saint-Césaire 1 Châtelperronian Neanderthal. J Archaeol Sci. 1999;26(7):753–73.https://doi.org/10.1006/jasc.1998.0345
31. Stock J.T. Hunter-Gatherer Postcranial Robusticity Relative to Patterns of Mobility, Climatic Adaptation, and Selection for Tissue Economy. Am J Phys Anthropol. 2006;131(2):194–204. https://doi.org/10.1002/ajpa.20398
32. Ruff C. Relative Limb Strength and Locomotion in Homo Habilis. Am J Phys Anthropol. 2009;138(1):90–100. https://doi.org/10.1002/ajpa.20907
33. Ruder T.D., Ampanozi G. Can Cross-Sectional Imaging as an Adjunct and/or Alternative to the Invasive Autopsy be Implemented With the NHS. J Forensic Radiol Imaging. 2013;1:28–9. https://doi.org/10.1016/j.jofri.2012.11.008
34. Peckmann T.R., Orr K., Meek S., Manolis S.K. Sex Determination From the Talus in a Contemporary Greek Population Using Discriminant Function Analysis. J Forensic Leg Med. 2015;33:14–9. https://doi.org/10.1016/j.jflm.2015.03.011
35. Rodríguez S., González A., Simón A., Rodríguez-Calvo M.S., Febrero-Bande M., Cordeiro C., et al. The Use of Computerized Tomography in Determining Stature and Sex From Metatarsal Bones. Leg Med. 2014;16(5):252–7. https://doi.org/10.1016/j.legalmed.2014.05.006
36. Robling A.G., Ubelaker D.H. Sex Estimation From the Metatarsals. J Forensic Sci. 1997;42(6):1062–9. https://doi.org/10.1520/JFS14261J
37. Byers S., Akoshima K., Curran B. Determination of Adult Stature From Metatarsal Length. Am J Phys Anthropol. 1989;79(3):275–9. https://doi.org/10.1002/ajpa.1330790303
38. Higginbotham-Jones J., Ward A. Forensic Radiology: The Role of Cross-Sectional Imaging in Virtual Post-Mortem Examinations. Radiography. 2014;20(1):87–90. https://doi.org/10.1016/j.radi.2013.10.003
39. Gunicheva N.V., Akhadov T.A., Shubkin V.N. Features of magnetic resonance imaging of the joints of the lower extremities in patients of different age groups. Siberian Medical Review. 2010;6(66):59-62. (In Russ).
40. Kubota Y., Hatada S., Kawaguchi Y. Important Factors for the Three-Dimensional Reconstruction of Neuronal Structures From Serial Ultrathin Sections. Front Neural Circuits. 2009;3:4.2009. https://doi.org/10.3389/neuro.04.004.2009
41. Yu W., Zeng L. Iterative Image Reconstruction for Limited-Angle Inverse Helical Cone-Beam Computed Tomography. Scanning. 2016;38(1):4–13. https://doi.org/10.1002/sca.21235
42. Michaeli J.G., DeGroff M.C., Roxas R.C. Error Aggregation in the Reengineering Process From 3D Scanning to Printing. Scanning. 2017;2017:1218541. https://doi.org/10.1155/2017/1218541
43. Sang Y-H., Hu H-C., Lu S-H., Wu Y-W, Li W-R., Tang Z-H. Accuracy Assessment of Three-Dimensional Surface Reconstructions of In Vivo Teeth From Cone-Beam Computed Tomography. Chin Med J (Engl). 2016;129(12):1464. https://doi.org/10.4103/0366-6999.183430
44. Jiang Y., Zhao J., Liao E-Y., Dai R-C., Wu X-P., Genant H.K. Application of Micro-CT Assessment of 3-D Bone Microstructure in Preclinical and Clinical Studies. J Bone Miner Metab. 2005;23(1):122–31. https://doi.org/10.1007/BF03026336
45. Bouxsein M.L., Boyd S.K., Christiansen B.A., Guldberg R.E., Jepsen K.J., Müller R. Guidelines for Assessment of Bone Microstructure in Rodents Using Micro–Computed Tomography. J Bone Miner Res. 2010;25(7):1468–86. https://doi.org/10.1002/jbmr.141
46. Christiansen B.A. Effect of Micro-Computed Tomography Voxel Size and Segmentation Method on Trabecular Bone Microstructure Measures in Mice. Bone Rep. 2016;5:136–140. https://doi.org/10.1016/j.bonr.2016.05.006
47. Ryakhovsky M. A., Khairullin R. M., Ermolenko A. S., Mitchenko I. V. Age dynamics of morphometric parameters of human foot bones according to X-ray osteometry. Russian Medical and Biological Bulletin named after Academician I.P. Pavlov. 2009;2. URL: https://cyberleninka.ru/article/n/vozrastnayadinamika-morfometricheskih-pokazateley-kostey-stopy-cheloveka-po-dannym-rentgenoosteometrii (date of application: 06/16/2024) (In Russ).
48. Zvyagin V.D., Dzhuvalyakov G.P. Age determination by microstructure of skull bones : method. Recommendations No. 10-11/61. Ministry OF Health OF THE USSR. Moscow, 1988:1-16. (In Russ).
49. Gladyshev YuM. Mikroskopicheskie konstrukcii kostnoj tkani i ih sudebno-meditsinskoe znachenie. Voronezh, 1966. (In Russ).
50. Kerley E.R. The microscopic determination of age in human bone. Am J Phys Anthropol. 1965;23:1:149-164. https://doi.org/10.1002/ajpa.1330230215
51. Kerley E.R., Ubelaker D.H. Revicions in the microscopic method of estimating age death in human cortical bone. Am J Phys Anthropol. 1978;49:1:545-546. https://doi.org/10.1002/ajpa.1330490414
Supplementary files
Review
For citations:
Dukov D.V., Russkikh A.N., Shabokha A.D., Alyab'ev F.V., Makarov A.F. Modern issues of surgical anatomy of the ligamentary apparatus and metatarsal bones of the human foot. Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2024;14(3):30-41. (In Russ.) https://doi.org/10.20340/vmi-rvz.2024.3.MORPH.3