Application of robotic technology in surgery (literature review)
https://doi.org/10.20340/vmi-rvz.2025.1.CLIN.1
Abstract
Relevance. Modern medicine is closely intertwined with engineering and technology. Robotic surgery is one of the most promising and fastest growing fields in the world. The growth of the global surgical robots market is driven by several factors including aging population, rising income levels, increasing healthcare expenditure, benefits of robotic surgeries, rising incidence of chronic diseases and support from government authorities and advancements in diagnostic technologies. Robots enable complex surgical interventions with minimal invasiveness. At the same time, there are barriers to the development of robotic technology, such as the high cost of robots and procedures, as well as a shortage of qualified specialists. The purpose of study. Evaluate the possibilities of robotic technology application in surgery. Materials and methods. In the course of the present study, we searched and analyzed current literature data from domestic and foreign sources on the application of robotic technologies in surgery. Results. Since the introduction of robotic systems in surgery, such as da Vinci, medical practice has undergone significant changes. Robotic-assisted surgical interventions have been of particular interest and demand in recent times and are gradually being introduced into various fields of modern medicine. Robotic surgical technologies provide higher precision and minimally invasive procedures, which helps to reduce the patient's recovery time and decrease the rate of postoperative complications. One of the main advantages of robotic surgery is the ability to perform complex manipulations with a high degree of precision. Three-dimensional image magnification and stability of the instruments allow the surgeon to better see and control the process, which, in turn, minimizes the risk of damage to healthy tissues and organs. Conclusion. Robotization is currently becoming increasingly widespread in various branches of medicine, including surgery. Modern robotic technologies are used in surgical interventions in limited anatomical areas where vital structures are located, contribute to improved visualization of the operated area, increasing the accuracy of the surgeon's actions and reducing the likelihood of complications.
About the Authors
D. G. ParfeevRussian Federation
Dmitriy G. Parfeev - MD, PhD, traumatologist-orthopedist, head of department No 1, Vreden National Medical Research Center of Traumatology and Orthopedics.
8, Akademika Baykova str., Saint Petersburg, 195427
Competing Interests:
None
A. M. Morozov
Russian Federation
Artem M. Morozov - MD, PhD, associate professor of the Department of General Surgery, Tver State Medical University.
4, Sovetskaya str., Tver, 170100
Competing Interests:
None
K. I. Khorak
Russian Federation
Konstantin I. Khorak - Traumatologist-orthopedist, Vreden National Medical Research Center of Traumatology and Orthopedics.
8, Akademika Baykova str., Saint Petersburg, 195427
Competing Interests:
None
P. G. Kogan
Russian Federation
Pavel G. Kogan - Candidate of Medical Sciences, traumatologist-orthopedist, Vreden National Medical Research Center of Traumatology and Orthopedics.
8, Akademika Baykova str., Saint Petersburg, 195427
Competing Interests:
None
S. V. Zhukov
Russian Federation
Sergey V. Zhukov - Doctor of Medical Sciences, Professor of the Department of Public Health and Healthcare, Tver State Medical University.
4, Sovetskaya str., Tver, 170100
Competing Interests:
None
A. D. Aminova
Russian Federation
Alina D. Aminova - Student, Tver State Medical University.
4, Sovetskaya str., Tver, 170100
Competing Interests:
None
V. A. Zhezheleva
Russian Federation
Valeriya A. Zhezheleva - Student, Tver State Medical University.
4, Sovetskaya str., Tver, 170100
Competing Interests:
None
References
1. Cowan B., Gomes C., Morris P., et al. Robotic technology in surgery; a classification system of soft tissue surgical robotic devices. Surg Endosc. 2024;38:3645-3653. https://doi.org/10.1007/s00464-024-10861-4
2. Andreev A.А., Glukhov A.A., Ostroushko A.P., Laptieva A.Y., Bokov D.A., Mikhailov N.O., Konovalov P.A. Automated robotic systems in surgical practice. Science and Innovations in Medicine. 2024;9(3):231-236. (In Russ.) https://doi.org/10.35693/SIM540155.
3. Pushkar' D.Iu., Kolontarev K.B. Robot-assisted radical prostatectomy — functional result. Part II. Pirogov Russian Jour-nal of Surgery. 2019;(4):80‑86. (In Russ.) https://doi.org/10.17116/hirurgia201904180
4. Handa A., Gaidhane A., Choudhari S.G. Role of Robotic-Assisted Surgery in Public Health: Its Advantages and Challenges. Cureus. 2024;16(6):e62958. https://doi.org/10.7759/cureus.62958
5. Morozov A.M., Zhukov S.V., Belyak M.A., Stamenkovich A.B. Assessment of economic loss-es due to the development of infection in the surgical intervention area. Healthcare manager. 2022;1:54-60. (In Russ.) https://doi.org/10.21045/1811-0185-2022-1-54-60
6. Wilson M., Badani K. Competing robotic systems. Urologic Clinics of North America. 2021;48(1):147-150. https://doi.org/10.1016/j.ucl.2020.09.007
7. Gabuzov G.G., Savrasov A.L. The place of the robot in operative gynecology. Endoscopic Surgery. 2021;27(6):56-63. (In Russ.) https://doi.org/10.17116/endoskop20212706156
8. Morrell A.L.G., Morrell-Junior A.C., Morrell A.G., Mendes J.M.F., Tustumi F., DE-Oliveira-E-Silva L.G., Morrell A. The history of robotic surgery and its evolution: when illusion becomes reality. Rev Col Bras Cir. 2021;13:48:e20202798. https://doi.org/1590/0100-6991e-20202798
9. Catchpole K., Cohen T., Alfred M., Lawton S., Kanji F., Shouhed D., Nemeth L., Anger J. Human Factors Integration in Robotic Surgery. Hum Factors. 2024;66(3):683-700. https://doi.org/10.1177/00187208211068946
10. Chihara R.K., Kim M.P., Chan E.Y. Robotic surgery facilitates complex minimally invasive operations. J Thorac Dis. 2020;12(9):4606-4607. https://doi.org/10.21037/jtd-2020-42
11. Morozov A.M., Sergeev A.N., Kadykov V.A. et al. Modern antiseptics in surgical area manipulation. The Bul-letin of Contemporary Clinical Medicine. 2020;13(3):51-58. (In Russ.) https://doi.org/10.20969/VSKM.2020.13(3):51-58
12. Gopal G. et al. Digital transformation in healthcare — architectures of present and future information technologies. Clin Chem Lab Med. 2019; 57(3):328-335. https://doi.org/10.1515/cclm-2018-0658
13. Mosoyan M.S. Modern robotics in medicine. Translational Medicine. 2020;7(5):91-108. (In Russ.) https://doi.org/10.18705/2311-4495-2020-7-5-91-108
14. Stefano G.B. Robotic Surgery: Fast Forward to Telemedicine. Med Sci Monit. 2017;17(23):1856. https://doi.org/10.12659/msm.904666
15. Domínguez-Rosado I., Mercado M.A. The future of technology and robotics in surgery. Rev Invest Clin. 2021;73(5):326-328. https://doi.org/10.24875/RIC.21000304
16. Cianchi F. Robotics in general surgery: a promising evolution. Minerva Surg. 2021;76(2):103-104. https://doi.org/10.23736/S2724-5691.21.08764-2
17. Kawashima K., Kanno T., Tadano K. Robots in laparoscopic surgery: Current and future status. BMC Biomed Eng. 2019;1:12. https://doi.org/10.1186/s42490-019-0012-1
18. Seekamp A. Robotik und computergestützte Chirurgie [Robotics and computer-assisted surgery]. Chirurgie (Heidelb). 2023; 94(4):289-291. https://doi.org/10.1007/s00104-023-01822-z
19. Pushkar' D.Iu., Kolontarev K.B. Robot-assisted surgery. Herald of the Russian Academy of Sciences. 2019;89(5):466-469. (In Russ.) https://doi.org/10.31857/S0869-5873895466-469
20. Keck T. Robotics in Surgery and Endoscopy. Visc Med. 2020;36(2):69. https://doi.org/10.1159/000506657
21. Stroganova L.B., Gardonyo R.A., Knyazev A.N. Standardization of equipment and methods of medical control in manned space flights and telemedicine issuesю. Quality and life. 2020; 1(25):45-53. (In Russ.) https://doi.org/10.34214/2312-5209-2020-25-1-45-53
22. Brassetti A., Ragusa A., Tedesco F., Prata F., Cacciatore L., Iannuzzi A., Bove A.M., Anceschi U., Proietti F., D'Annunzio S., Flammia R.S., Chiacchio G., Ferriero M., Guaglianone S., Mastroianni R., Misuraca L., Tuderti G., Simone G. Robotic Surgery in Urology: History from probot® to hugotm. Sensors (Basel). 2023;11;23(16):7104. https://doi.org/10.3390/s23167104
23. Wang X. et al. An analysis of clinical Efficacy of Microsurgical resection of intradural Neoplasm by unilateral approach with Caspar retractors. Medical Principles and Practice. 2020;29(3):231-237. https://doi.org/10.1159/000503554
24. Lin T., Xie Q., Peng T., Zhao X., Chen D. The role of robotic surgery in neurological cases: A systematic review on brain and spine applications. Heliyon. 2023 19;9(12):e22523. https://doi.org/10.1016/j.heliyon.2023.e22523
25. Lychagin A.V. et al. Clinical evaluation and accuracy of mechanical axis alignment in robotic total knee arthroplasty. Genij Ortopedii. 2023;29(5):487-494. (In Russ.) https://doi.org/10.18019/1028-4427-2023-29-5-487-494
26. Hans S., Baudouin R., Circiu M.P., Couineau F., Lisan Q., Crevier-Buchman L., Lechien J.R. Laryngeal Cancer Surgery: History and Current Indications of Transoral Laser Microsurgery and Transoral Robotic Surgery. J Clin Med. 2022; 29;11(19):5769. https://doi.org/10.3390/jcm11195769
27. Ryvlin J., Shin J.H., Yassari R., De la Garza Ramos R. Editorial: Artificial intelligence and advanced technologies in neurological surgery. Front Surg. 2023;18;10:1251086. https://doi.org/10.3389/fsurg.2023.1251086
28. Rivero-Moreno Y., Echevarria S., Vidal-Valderrama C., et al. Robotic Surgery: A Comprehensive Review of the Literature and Current Trends. Cureus. 2023;15(7):e42370. https://doi.org/10.7759/cureus.42370
29. Anderson, Oliver, and Tan Arulampalam. The FreeHand system. Handbook of Robotic and Image-Guided Surgery. Elsevier. 2020:57-78. https://doi.org/10.1016/B978-0-12-814245-5.00004-9
30. Dmitriev A.Yu., Dashyan V.G. Robotics in Cranial Neurosurgery, 35 Years of Evolution. Russian Sklifosovsky Journal "Emergency Medical Care". 2022;11(2):355-363. (In Russ.) https://doi.org/10.23934/2223-9022-2022-11-2-355-363
31. Ding C., Saw C.B., Timmerman R.D. Cyberknife stereotactic radiosurgery and radiation therapy treatment planning system. Med Dosim. 2018; 43(2):129-140. https://doi.org/10.1016/j.meddos.2018.02.006
32. Sharma Sh., Gupta D.K. Modern surgical strategies in pediatric oncology. Medical News of North Caucasus. 2016;11(2):228-231. https://doi.org/10.14300/mnnc.2016.11047
33. Ihnát P., Skácelíková E., Tesař M., Penka I. Stereotactic body radiotherapy using the CyberKnife® system in the treatment of patients with liver metastases: state of the art. Onco Targets Ther. 2018;10(11):4685-4691. https://doi.org/10.2147/OTT.S165878
34. Bin Sumaida A., Shanbhag N.M., Balaraj K. Evaluating the Efficacy and Safety of CyberKnife for Meningiomas: A Systematic Review. Cureus. 2024;24;16(3):e56848. https://doi.org/10.7759/cureus.56848
35. Chopra H., Baig A.A., Cavalu S., Singh I., Emran T.B. Robotics in surgery: Current trends. Ann Med Surg (Lond). 2022 17;81:104375. https://doi.org/10.1016/j.amsu.2022.104375
36. Morrell A.L.G., Morrell-Junior A.C., Morrell A.G., Mendes J.M.F., Tustumi F., DE-Oliveira-E-Silva L.G., Morrell A. The history of robotic surgery and its evolution: when illusion becomes reality. Rev Col Bras Cir. 2021 13;48:e20202798. https://doi.org/10.1590/0100-6991e-20202798
37. Alluri R.K., Avrumova F., Sivaganesan A., Vaishnav A.S., Lebl D.R., Qureshi S.A. Overview of Robotic Technology in Spine Surgery. HSS J. 2021;17(3):308-316. https://doi.org/10.1177/15563316211026647
38. Remily E.A., Nabet A., Sax O.C., Douglas S.J., Pervaiz S.S., Delanois R.E. Impact of Robotic Assisted Surgery on Outcomes in Total Hip Arthroplasty. Arthro-plast Today. 2021 30;9:46-49. https://doi.org/10.1016/j.artd.2021.04.003
39. Grigorchuk A.Yu., Bazarov D.V. Kazaryan G.A. et al. First experience with robot-assisted segmentectomy with bronchusplasty. Clinical and experimental surgery. 2023; 11(4):128-132. (In Russ.) https://doi.org/10.33029/2308-1198-2023-11-4-128-132
40. Bramhe S., Pathak S.S. Robotic Surgery: A Narrative Review. Cureus. 2022 15;14(9):e29179. https://doi.org/10.7759/cureus.29179
41. Domínguez-Rosado I., Mercado M.A. The future of technology and robotics in surgery. Rev Invest Clin. 2021;73(5):326-328. https://doi.org/10.24875/RIC.21000304
42. Semikolenova V.A., Andreev A.A., Laptiyova A.Y., Glukhov A.A. Modern minimally invasive technologies in gynecological practice. Siberian Medical Review. 2022;4:39-45. (In Russ.) https://doi.org/10.20333/25000136-2022-4-39-45
43. Andreev A.А. et al. Automated robotic systems in surgical practice. Science and Innovations in Medicine. 2024;9(3):231-236. (In Russ.) https://doi.org/10.35693/SIM540155
44. Dunn D. Robotic-assisted surgery: A brief history to understand today’s practices. AORN Journal. 2022;115(3):217-221. https://doi.org/10.1002/aorn.13629
45. Jalilov X.M. et al. A brief history of artificial intelligence and robot-ic surgery in orthopedics and traumatology and expectations for the future. Central Asian Journal of Medical and Natural Science. 2022;3(6):223-232. (In Russ.) https://doi.org/10.17605/cajmns.v3i6.1199
46. Moiseev M.E., Gladyshev D.V., Kovalenko S.A. et al. Influence of operative risk factors on immediate results of robot-assisted surgery for rectal cancer. RMZH. Medical Review. 2023;7(4):191-195. (In Russ.) https://doi.org/10.32364/2587-6821-2023-7-4-191-195
47. Ilyin D.M., Guliev B.G. Retzius-saving robot-assisted radical prostatectomy: first experience and technique of performance. Urological Bulletins. 2019;9(4):19-24. (In Russ.) https://doi.org/10.17816/uroved9419-24
48. Stauffer T.P., Kim B.I., Grant C., Adams S.B., Anastasio A.T. Robotic Technology in Foot and Ankle Surgery: A Comprehensive Review. Sensors (Basel). 2023;6;23(2):686. https://doi.org/10.3390/s23020686
49. Are L., De Mauro D., Rovere G., Fresta L., Tartarone M., Illuminati A., Smakaj A., Maccauro G., Liuzza F. Robotic-assisted unicompartimental knee arthroplasty performed with Navio system: a systematic review. Eur Rev Med Pharmacol Sci. 2023;27(6):2624-2633. https://doi.org/10.26355/eurrev_202303_31799
50. Tugcu V., Akca O., Simsek A., et al. Robotic-assisted perineal versus transperitoneal radical prostatectomy: A matched-pair analysis. Turk J Urol. 2019;45(4):265-272. https://doi.org/10.5152/tud.2019.98254
51. Yukhnova Y.I. Artificial intelligence and robots in medicine: pro-problem of responsibility for causing harm to patients. Jurist. 2023;(1):21-26. (In Russ.) https://doi.org/10.18572/1812-3929-2023-1-21-26
52. Rakul S.A., Romashchenko P.N., Pozdnyakov K.V., Maistrenko N.A., Eloev R.A. Minimally invasive technologies for surgical treatment of kidney cancer. Grekov's Bulletin of Surgery. 2020;179(6):34-43. (In Russ.) https://doi.org/10.24884/0042-4625-2020-179-6-34-43
53. Urkmez A., Ranasinghe W., Davis J.W. Surgical techniques to improve continence recovery after robot-assisted radical prostatectomy. Transl Androl Urol. 2020;9(6):3036–48. https://doi.org/10.21037/tau.2020.03.36
54. Itinson K.S. Technologies of the fourth industrial revolution in teaching medical specialties. Azimut of scien-tific research: pedagogy and psychology. 2020;2(31):103-105. (In Russ.) https://doi.org/10.26140/anip-2020-0902-0022
55. Kozka A.A., Olifirova O.S., Ermolaeva E.A. Simulation training of doctors in the basics of endovideosurgery. Virtual technologies in medicine. 2020;3(25):53-54. (In Russ.) https://doi.org/10.46594/2687-0037_2020_3_1210
56. Pushkar D. Yu., Govorov A. V., Rasner P. I., Kolontarev K. B. The role of simulators in teaching for robot-assisted surgery. Surgery. Journal them. N.I. Pirogov. 2018;3:82-88. (In Russ.) https://doi.org/10.17116/hirurgia2018382-88
57. Shevchenko Y.L., Ablitsov A.Y., Vetshev P.S. et al. Modern technologies in surgery of the mediastinum. Bulletin of N.I. Pirogov National Medical and Surgical Center. 2020;15(1):4-12. (In Russ.) https://doi.org/10.25881/BPNMSC.2020.82.77.001
58. Szolkowska M., Szczepulska-Wojcik E., Maksymiuk B., Burakowska B. Primary mediastinal neoplasms: a report of 1.005 cases from a single institution. J Thorac Dis. 2019;11(6):2498–2511. https://doi.org/10.21037/jtd.2019.05.42
59. Ishikawa N., Oda M., Kawachi K., Watanabe G. Robot-assisted single-port surgery for mediastinal tumors. Surg Today. 2019;49(1):96-98. https://doi.org/10.1007/s00595-018-1722-z
60. Cheng Y., Lin Y., Long Y., Du L., Chen R., Hu T., Guo Q., Liao G., Huang J. Is the CyberKnife© radiosurgery system effective and safe for patients? An umbrella review of the evidence. Future Oncol. 2022;18(14):1777-1791. https://doi.org/10.2217/fon-2021-0844
61. Svetocheva Y.A., Slusarenko R.I., Tsarichenko D.G. et al. Reconstruction of the pelvic musculoskeletal apparatus at robot-assisted radical prostatectomy as a stage of the learning curve. Andrology & Genital Surgery. 2021; 22(1):76-84. (In Russ.] https://doi.org/10.17650/1726-9784-2021-22-1-76-84
62. Rakul S.A., Pozdnyakov K.V., Eloev R.A., Pliskachevskiy N.A. Practical aspects of treatment of kidney cancer in a modern hospital: the evolution of surgical approaches. Cancer Urology. 2018;14(2):44-53. (In Russ.) https://doi.org/10.17650/1726-9776-2018-14-2-44-53
63. Furukawa J., Kanayama H., Azuma H. et. al. «Trifecta» outcomes of robot-assisted partial nephrectomy: a large Japanese multicenter study. J. Clin. Oncol. 2020; 25(2):347–353. https://doi.org/10.1007/s10147-019-01565-0
64. Wang J., Hu K., Wang Y., Wu Y., Bao E7, Wang J., Tan S., Tan T. Robot-assisted and open radical prostatectomy: a systematic review and meta-analysis of prospective studies. J Robot Surg. 2023;17(6):2617-2631. (In Russ.) https://doi.org/10.1007/s11701-023-01714-8
65. Melerzanov A.V., Almazov A.A., Ivanova M.A. et al. Classification of digital technologies and their impact on health care indicators. Problems of standardization in healthcare. 2020;(5-6):3-9. (In Russ.) https://doi.org/10.26347/1607-2502202005-06003-009
66. Cowan B., Gomes C., Morris P., Fryrear R. 2nd, Petraiuolo W., Walton M., Alseidi A., Horgan S., Hagen M. Robotic technology in surgery; a classification system of soft tissue surgical robotic devices. Surg Endosc. 2024;38(7):3645-3653. https://doi.org/10.1007/s00464-024-10861-4
67. Aitzetmüller M.M., Klietz M.L., Dermietzel A.F., Hirsch T., Kückelhaus M. Robotic-Assisted Microsurgery and Its Future in Plastic Surgery. J Clin Med. 2022 13;11(12):3378. https://doi.org/10.3390/jcm11123378
68. Grünherz L., Gousopoulos E., Barbon C., Uyulmaz S., Giovanoli P., Lindenblatt N. Robotik in der plastischen Chirurgie [Robotics in plastic surgery]. Chirurgie (Heidelb). 2023;94(4):325-329. https://doi.org/10.1007/s00104-022-01790-w
69. Condino S., Piazza R., Carbone M., Bath J., Troisi N., Ferrari M., Berchiolli R. Bioengineering, augmented reality, and robotic surgery in vascular surgery: A literature review. Front Surg. 2022;19;9:966118. https://doi.org/10.3389/fsurg.2022.966118
70. Battenberg A.K., Netravali N.A., Lonner J.H. A novel handheld robotic-assisted system for unicompartmental knee arthroplasty: surgical technique and early survivorship. J Robot Surg. 2020;14(1):55-60. https://doi.org/10.1007/s11701-018-00907-w
71. Zeng Q., Chen C., Zhang N., Yu J., Yan D., Xu C., Liu D., Zhang Q., Zhang X. Robot-assisted thoracoscopic surgery for mediastinal tumours in children: a single-centre retrospective study of 149 patients. Eur J Cardiothorac Surg. 2023;1;64(5):ezad362. https://doi.org/10.1093/ejcts/ezad362
72. Sherif Y.A., Adam M.A., Imana A., Erdene S., Davis R.W. Remote Robotic Surgery and Virtual Education Platforms: How Advanced Surgical Technologies Can Increase Access to Surgical Care in Resource-Limited Settings. Semin Plast Surg. 2023;30;37(3):217-222. https://doi.org/10.1055/s-0043-1771301
73. Sekhon Inderjit Singh H.K., Armstrong E.R., Shah S., Mirnezami R. Application of robotic technologies in lower gastrointestinal tract endoscopy: A systematic review. World J Gastrointest Endosc. 2021;16;13(12):673-697. https://doi.org/10.4253/wjge.v13.i12.673
74. Mao J.Z., Agyei J.O., Khan A., Hess R.M., Jowdy P.K., Mullin J.P., Pollina J. Technologic Evolution of Navigation and Robotics in Spine Surgery: A Historical Perspective. World Neurosurg. 2021;145:159-167. https://doi.org/10.1016/j.wneu.2020.08.224
75. Morozov A.M., Zhukov S.V., Belyak M.A., Stramenkovich A.B. Estimation of economic losses due to the development of infection in the area of surgical intervention. Health Care Manager. 2022;1:54-60. (In Russ.) https://doi.org/10.21045/1811-0185-2022-1-54-60
76. Sheetz K.H., Claflin J., Dimick J.B. Trends in the Adoption of Robotic Surgery for Common Surgical Procedures. JAMA Netw Open. 2020; 3;3(1):e1918911. https://doi.org/10.1001/jamanetworkopen.2019.18911
77. Oichueva B.R., Amegha N., Rakhmanberdi Kyzy M. The role of AI in medicine: the beginning of new era. Journal of Osh State University. Medicine. 2024;1(3):59-65. https://doi.org/10.52754/16948831_2024_1(3)_8
Review
For citations:
Parfeev D.G., Morozov A.M., Khorak K.I., Kogan P.G., Zhukov S.V., Aminova A.D., Zhezheleva V.A. Application of robotic technology in surgery (literature review). Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2025;15(1):30-38. (In Russ.) https://doi.org/10.20340/vmi-rvz.2025.1.CLIN.1