Possibilities of using artificial intelligence technologies in the morphological diagnosis of inflammatory bowel diseases (literature review)
https://doi.org/10.20340/vmi-rvz.2025.1.MORPH.1
Abstract
Introduction. Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic immune-inflammatory pathologies of the gastrointestinal tract. This study focuses on the role of artificial intelligence (AI) in the morphological diagnosis of IBD, endoscopic visualization, outcome prediction, and patient monitoring. Aim: To summarize data on the application of AI methods in the diagnosis and treatment of IBD, including digital image analysis, remission prediction, inflammation activity evaluation, and the automation of histological and endoscopic assessment processes. Materials and methods. Modern studies on the use of machine learning (ML) and deep learning (DL) technologies in the diagnosis of IBD were analyzed. Special attention was paid to histological image processing methods, neural network algorithms for inflammation staging, and the use of AI for real-time endoscopic visualization. Results. AI technologies provide more accurate and objective determination of histological inflammation activity using Geboes, Nancy, and Robarts indices. Deep neural networks (CNN) enable automatic classification of inflammation stages and the detection of residual inflammation, which is critical for preventing relapses and reducing colorectal cancer risk. Endocytoscopy and real-time visualization algorithms improve the accuracy of early detection of mucosal dysplasia. Neural networks and other ML algorithms demonstrate high sensitivity and specificity in distinguishing CD from UC and assessing histological remission. Conclusion. AI is becoming an integral part of IBD diagnostics, enhancing the accuracy of morphological studies, optimizing endoscopic methods, and reducing error rates. Integrating AI into clinical practice expands treatment possibilities, including personalized approaches and long-term patient monitoring.
Keywords
About the Authors
E. G. ChurilovaRussian Federation
Elizaveta G. Churilova - Student, First Moscow State Medical University named after I.M. Sechenov (Sechenov University).
8/2, Trubetskaya st., Moscow, 119991
Competing Interests:
None
A. B. Kazumova
Russian Federation
Aglaya B. Kazumova - Student, First Moscow State Medical University named after I.M. Sechenov (Sechenov University).
8/2, Trubetskaya st., Moscow, 119991
Competing Interests:
None
Kh. M. Akhrieva
Russian Federation
Khava M. Akhrieva - Cand. Sci. (Med.), Head of the Department of Faculty Therapy, Faculty of Medicine, Ingush State University.
7, I.B. Zyazikov Avenue, Magas, Republic of Ingushetia, 386001
Competing Interests:
None
N. V. Pachuasvili
Russian Federation
Nano V. Pachuashvili - Cand. Sci. (Med.), Researcher, Laboratory of Endocrine Biophotonics, National Medical Research Center of Endocrinology.
8/2, Trubetskaya st., Moscow, 119991; 11, Dmitry Ulyanov st., Moscow, 117292
Competing Interests:
None
A. S. Tertychnyy
Russian Federation
Aleksandr S. Tertychnyy - Dr. Sci. (Med.), Professor, Head of the Laboratory of Electron Microscopy and Immunohistochemistry, Institute of Clinical Morphology and Digital Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University).
8/2, Trubetskaya st., Moscow, 119991
Competing Interests:
None
References
1. Uspenskiy Yu.P., Ivanov S.V., Fominykh Yu.A., Narkevich A.N., Segal’ A.M., Grjibovski A.M. Prediction of life-threatening complications of inflammatory bowel disease using neural networks: a practical tool for health care professionals. Experimental and Clinical Gastroenterology. 2023;(9):20-33. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-217-9-20-33
2. Bruner L.P., White A.M., Proksell S. Inflammatory Bowel Disease. Prim Care. 2023;50(3):411-427. https://doi.org/10.1016/j.pop.2023.03.009
3. Maev I.V., Shelygin Y.A., Skalinskaya M.I., Veselov A.V., Skazyvaeva E.V., Rasmagina I.A., Komarova D.A., Bakulin I.G. The pathomorphosis of in-flammatory bowel diseases. Annals of the Russian academy of medical sciences. 2020;75(1):27-35. (In Russ.) https://doi.org/10.15690/vramn1219
4. Kawamoto A., Takenaka K., Okamoto R., Watanabe M., Ohtsuka K. Systematic review of artificial intelligence-based image diagnosis for inflammatory bowel disease. Dig Endosc. 2022;34(7):1311-1319. https://doi.org/10.1111/den.14334
5. Cannarozzi A.L., Massimino L., Latiano A., Parigi T.L., Giuliani F., Bossa F., et al. Artificial intelligence: A new tool in the pathologist's armamentarium for the diagnosis of IBD. Comput Struct Biotechnol J. 2024;11(23):3407-3417. https://doi.org/10.1016/j.csbj.2024.09.003
6. Akhrieva Kh.M., Kogan E.A., Tertychnyi A.S., Radenska-Lopovok S.G., Zairatyants O.V., Selivanova L.S. Assessment of histologic activity in colitis. Russian Journal of Archive of Pathology. 2022;84(2):51 57. (In Russ.) https://doi.org/10.17116/patol20228402151
7. Tertychnyy A.S., Akhriyeva Kh.M., Kogan E.A., Zayratyants O.V., Selivanova L.S. Modern Approaches in the Morphological Diagnosis of Inflammatory Bowel Diseases. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2022;32(2):73-84. https://doi.org/10.22416/1382-4376-2022-32-2-73-84
8. Ahmad H.A., East J.E., Panaccione R., Travis S., Canavan J.B., Usiskin K., Byrne M.F. Artificial intelligence in inflammatory bowel disease: implications for clinical practice and future directions. Intest Res. 2023;21(3):283-294. https://doi.org/10.5217/ir.2023.00020
9. Hoogenboom S.A., Bagci U., Wallace M.B. Artificial intelligence in gastroenterology. The current state of play and the potential. How will it affect our practice and when? Tech Innov Gastrointest Endosc. 2020;22(2):42-47. https://doi.org/10.1016/j.tgie.2019.150634
10. Diaconu C., State M., Birligea M., Ifrim M., Bajdechi G., Georgescu T., et al. The Role of Artificial Intelligence in Monitoring Inflammatory Bowel Disease – The Future Is Now. Diagnostics. 2023;13(4):735. https://doi.org/10.3390/diagnostics13040735
11. Flynn S., Eisenstein S. Inflammatory Bowel Disease Presentation and Diagnosis. Surg Clin North Am. 2019;99(6):1051-1062. https://doi.org/10.1016/j.suc.2019.08.001
12. Gu P., Mendonca O., Carter D., Dube S., Wang P., Huang X., et al. AI-luminating Artificial Intelligence in Inflammatory Bowel Diseases: A Narrative Review on the Role of AI in Endoscopy, Histology, and Imaging for IBD. Inflamm Bowel Dis. 2024;30(12):2467-2485. https://doi.org/10.1093/ibd/izae030
13. Ben Hamida A., Devanne M., Weber J., Truntzer C., Derangère V., Ghiringhelli F., et al. Deep learning for colon cancer histopathological images analysis. Comput Biol Med. 2021;136:104730. https://doi.org/10.1016/j.compbiomed.2021.104730
14. Guliyeva A.A. Development of artificial intelligence based on neural networks. Actual research. 2022;34(113):6-9. (In Russ.)
15. Deo R. Machine Learning in Medicine. Circulation. 2015;132(20):1920-30. https://doi.org/10.1161/CIRCULATIONAHA.115.001593
16. Panch T., Szolovits P., Atun R. Artificial intelligence, machine learning and health systems. J Glob Health. 2018;8(2):020303. https://doi.org/10.7189/jogh.08.020303
17. LeCun Y., Bengio Y., Hinton G. Deep learning. Nature. 2015;521(7553):436-44. https://doi.org/10.1038/nature14539
18. Maaser C., Sturm A., Vavricka S.R., Kucharzik T., Fiorino G., Annese V., et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. J Crohns Colitis. 2019;13(2):144-164. https://doi.org/10.1093/ecco-jcc/jjy113
19. Pal P., Ramchandani M., Patel R., Banerjee R., Kanaganti S., Gupta R., et al. Role of ultra-high definition endoscopy (endomicroscopy and endocytoscopy) and real-time histologic examination in inflammatory bowel disease: Scoping review. Dig Endosc. 2024;36(3):274-289. https://doi.org/10.1111/den.14659
20. Maeda Y., Kudo S.E., Mori Y., Misawa M., Ogata N., Sasanuma S., et al. Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis. Gastrointest Endosc. 2019;89(2):408-415. https://doi.org/10.1016/j.gie.2018.09.024
21. Yang L.S., Perry E., Shan L., Wilding H., Connell W., Thompson A.J., et al. Clinical application and diagnostic accuracy of artificial intelligence in colonoscopy for inflammatory bowel disease: systematic review. Endosc Int Open. 2022;10(7):E1004-E1013. https://doi.org/10.1055/a-1846-0642
22. Takenaka K., Ohtsuka K., Fujii T., Negi M., Suzuki K., Shimizu H., et al. Development and Validation of a Deep Neural Network for Accurate Evaluation of Endoscopic Images From Patients With Ulcerative Colitis. Gastroenterology. 2020;158(8):2150-2157. https://doi.org/10.1053/j.gastro.2020.02.012
23. Geboes K., Riddell R., Ost A., Jensfelt B., Persson T., Löfberg R. A reproducible grading scale for histological assessment of inflammation in ulcerative colitis. Gut. 2000;47(3):404-409. https://doi.org/10.1136/gut.47.3.404
24. Marchal-Bressenot A., Salleron J., Boulagnon-Rombi C., Bastien C., Cahn V., Cadiot G., et al. Development and validation of the Nancy histological index for UC. Gut. 2017;66(1):43-49. https://doi.org/10.1136/gutjnl-2015-310187
25. Mosli M.H., Feagan B.G., Zou G., Sandborn W.J., D’Haens G., Khanna R., et al. Development and validation of a histological index for UC. Gut. 2017;66(1):50-58. https://doi.org/10.1136/gutjnl-2015-310393
26. Gui X., Bazarova A., Del Amor R., Vieth M., de Hertogh G., Villanacci V., et al. PICaSSO Histologic Remission Index (PHRI) in ulcerative colitis: development of a novel simplified histological score for monitoring mucosal healing and predicting clinical outcomes and its applicability in an artificial intelligence system. Gut. 2022;71(5):889-898. https://doi.org/10.1136/gutjnl-2021-326376
27. Iacucci M., Parigi T.L., Del Amor R., Meseguer P., Mandelli G., Bozzola A., et al. Artificial Intelligence Enabled Histological Prediction of Remission or Activity and Clinical Out-comes in Ulcerative Colitis. Gastroenterology. 2023;164(7):1180-1188.e2. https://doi.org/10.1053/j.gastro.2023.02.031
28. Murthy S.K., Feuerstein J.D., Nguyen G.C., Velayos F.S. AGA Clinical Practice Update on Endoscopic Surveillance and Management of Colorectal Dysplasia in Inflammatory Bowel Diseases: Expert Review. Gastroenterology. 2021;161(3):1043-1051.e4. https://doi.org/10.1053/j.gastro.2021.05.063
29. Smolander J, Dehmer M, Emmert-Streib F. Comparing deep belief networks with support vector machines for classifying gene expression data from complex disorders. FEBS Open Bio. 2019 Jul;9(7):1232-1248. https://doi.org/10.1002/2211-5463.12652
30. Kang L.I., Sarullo K., Marsh J.N., Lu L., Khonde P., Ma C., et al. Development of a deep learning algorithm for Paneth cell density quantification for inflammatory bowel disease. E Bio Medicine. 2024;110:105440. https://doi.org/10.1016/j.ebiom.2024.105440
31. Bakulin I.G., Rasmagina I.A., Skalinskaya M.I., Mashevsky G.A., Shelyakina N.M. Application of artificial intelligence for analyzing endoscopic images in inflammatory bowel diseases. Therapy. 2022;8(7):7-14. (In Russ.) https://dx.doi.org/10.18565/therapy.2022.7.7-14
32. Pradhan P., Meyer T., Vieth M., Stallmach A., Waldner M., Schmitt M., et al. Semantic segmentation of non-linear multimodal images for disease grading of inflammatory bowel disease: A segnet-based application. ICPRAM. 2019;396-405. https://dx.doi.org/10.5220/0007314003960405
33. Liu X., Prasath S., Siddiqui I., Walters T.D., Denson L.A., Dhaliwal J. Machine Learning-Based Prediction of Pediatric Ulcerative Colitis Treatment Response Using Diagnostic Histopathology. Gastroenterology. 2024;166(5):921-924.e4. https://doi.org/10.1053/j.gastro.2024.01.033
34. Yao H., Najarian K., Gryak J., Bishu S., Rice M.D., Waljee A.K., et al. Fully automated endoscopic disease activity assessment in ulcerative colitis. Gastrointest Endosc. 2021;93(3):728-736.e1. https://doi.org/10.1016/j.gie.2020.08.011
35. Zhou J., Wu L., Wan X., Shen L., Liu J., Zhang J., et al. A novel artificial intelligence system for the assessment of bowel preparation. Gastrointest Endosc. 2020;91(2):428-435.e2. https://doi.org/10.1016/j.gie.2019.11.026
36. Liu X., Reigle J., Prasath V.B.S., Dhaliwal J. Artificial intelligence image-based prediction models in IBD exhibit high risk of bias: A systematic review. Comput Biol Med. 2024;171:108093. https://doi.org/10.1016/j.compbiomed.2024.108093
Supplementary files
Review
For citations:
Churilova E.G., Kazumova A.B., Akhrieva Kh.M., Pachuasvili N.V., Tertychnyy A.S. Possibilities of using artificial intelligence technologies in the morphological diagnosis of inflammatory bowel diseases (literature review). Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2025;15(1):22-29. (In Russ.) https://doi.org/10.20340/vmi-rvz.2025.1.MORPH.1