Preview

Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH)

Advanced search

Morphometric parameters of the knee joint: completeness and quality of assessment according to radiography

https://doi.org/10.20340/vmi-rvz.2025.4.MIM.1

Abstract

Background. Knee joint radiography remains the primary diagnostic method for gonarthrosis at the outpatient stage. Correct disease staging requires accurate measurement of joint space width, however, the quality of study result descriptions has not been fully investigated.
Objective: To evaluate the completeness of joint space width descriptions and the correctness of gonarthrosis staging in knee joint radiography protocols.
Materials and methods. 1000 randomly selected knee joint radiography protocols from the UMIAS database of Moscow for the period 2023-2024 were analyzed. The presence of objective data on joint space width measurements and the correctness of staging according to N.S. Kosinskaya classification were assessed.
Results. Objective joint space measurement data was contained in only 22.0% of protocols (220 out of 1000). In 78.0% of cases, subjective formulations such as "moderately narrowed", "unevenly narrowed" were used without specific measurements. Nevertheless, specific stages of gonarthrosis were indicated in conclusions: stage I – in 54.1% of defective protocols, stage II – in 31.8%, stage III – in 8.5%. In 5.6% of cases, disease stage was not determined.
Conclusion. Unsatisfactory completeness of morphometric parameter descriptions in knee joint radiography was revealed. Implementation of automated joint space width measurement tools is necessary for objectification of gonarthrosis staging and improvement of diagnostic quality.

About the Authors

E. V. Astapenko
Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Russian Federation

Elena V. Astapenko, Junior Researcher, Department of Medical Informatics, Radiomics, and Radiogenomics 
Author contributions: study concept and design development, data collection and processing, and writing.

Oruzheyny Lane, 43, building 1, Moscow, 127006


Competing Interests:

The authors declare that they have no competing interests.



A. V. Vladzimirskiy
Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Russian Federation

Anton V. Vladzimirsky, Deputy Director for Research 
Author contributions: text editing, approval of the final version of the article for publication.

Oruzheyny Lane, 43, building 1, Moscow, 127006


Competing Interests:

The authors declare that they have no competing interests.



References

1. Informativnost' metodov luchevoy diagnostiki pri razlichnykh patologicheskikh sostoyaniyakh organizma. Razdel 3. Diagnostika patologicheskikh sostoyaniy i zabolevaniy opornodvigatel'nogo apparata: me-todicheskie rekomendatsii. Sost. S.P. Morozov, D.S. Burmistrov, S.V. Epifanova [i dr.]; pod red. S. P. Morozova. Seriya «Luchshie praktiki luchevoy i instrumental'noy diagnostiki». Vypusk 20. 2-e izd., pe-rerabotannoe i dop. Moscow: GBUZ «NPKTs DiT DZM», 2020:44. (In Russ.)

2. Rostovtsev M.V. i dr. Atlas rentgenoanatomii i ukladok: rukovodstvo dlya vrachey. 2-e izd., ispr. i dop. Moscow: GEOTAR-Media, 2017:320. (In Russ.)

3. Tsvinger SM, Govorin AV, Romanova EN, Portyannikova OO. Incidence of osteoarthritis and comorbid background features in patients seeking medical attention for joint pain. Profilakticheskaya meditsina. 2021;24(1):67– 72. (In Russ.) https://doi.org/10.17116/profmed20212401167

4. Giorgino R, Albano D, Fusco S, Peretti GM, Mangiavini L, Messina C. Knee Osteoarthritis: Epidemiology, Pathogenesis, and Mesenchymal Stem Cells: What Else Is New? An Update. Int J Mol Sci. 2023 Mar 29;24(7):6405. https://doi.org/10.3390/ijms24076405

5. Romakina NA, Gladkova EV, Titova YuI, Gladkova YuK. Possibilities of comprehensive diagnosis of the initial stages of osteoarthritis. Saratovskiy nauchno-meditsinskiy zhurnal. 2020;16(2):494-499. (In Russ.)

6. Smirnov AV. Radiological diagnosis of primary idiopathic osteoarthritis. Russkiy meditsinskiy zhurnal. 2001;7:294-297. (In Russ.)

7. Assotsiatsiya revmatologov Rossii, Assotsiatsiya travmatologov-ortopedov Rossii, Obshcherossiyskaya obshchestvennaya organizatsiya Assotsiatsiya reabilitologov Rossii, Klinicheskie rekomendatsii Mini-sterstva Zdravookhraneniya Rossiyskoy Federatsii: Gonartroz, 2024. (In Russ.)

8. Kosinskaya N.S. Degenerativno-distroficheskie porazheniya kostno-sustavnogo apparata. Moscow: Izd-vo «Kniga po Trebovaniyu», 2013:245. (In Russ.)

9. Lawford BJ, Bennell KL, Ewald D, Li P, De Silva A, Pardo J, Capewell B, Hall M, Haber T, Egerton T, Filbay S, Dobson F, Hinman RS. Effects of X-ray-based diagnosis and explanation of knee osteoarthritis on patient beliefs about osteoarthritis management: A randomised clinical trial. PLoS Med. 2025 Feb 4;22(2):e1004537. https://doi.org/10.1371/journal.pmed.1004537. PMID: 39903790; PMCID: PMC11838874.

10. Wang, Q., Runhaar, J., Kloppenburg, M. et al. Diagnosis of early stage knee osteoarthritis based on early clinical course: data from the CHECK cohort. Arthritis Res Ther. 2021;23:217. https://doi.org/10.1186/s13075-021-02598-5

11. York T, Franklin C, Reynolds K, Munro G, Jenney H, Harland W, Leong D. Reporting errors in plain radiographs for lower limb trauma-a systematic review and meta-analysis. Skeletal Radiol. 2022 Jan; 51(1):171-182. https://doi.org/10.1007/s00256-021-03821-9

12. Aleshkevich AI. Improved Radiometry Technique in the Determination of X-ray Joint Gap Parameters in Osteoarthritis of the Knee. Meditsinskie novosti. 2021;4 (319). (In Russ.)

13. Hirschmann A, Cyriac J, Stieltjes B, Kober T, Richiardi J, Omoumi P. Artificial Intelligence in Musculoskeletal Imaging: Review of Current Literature, Challenges, and Trends. Semin Musculoskelet Radiol. 2019 Jun; 23(3):304-311. https://doi.org/10.1055/s-0039-1684024. Epub 2019 Jun 4. PMID: 31163504.

14. Alsoof D, McDonald CL, Kuris EO, Daniels AH. Machine Learning for the Orthopaedic Surgeon: Uses and Limitations. J Bone Joint Surg Am. 2022 Sep 7;104(17):1586-1594. https://doi.org/10.2106/JBJS.21.01305. Epub 2022 Apr 5. PMID: 35383655.

15. Jiang T, Lau SH, Zhang J, Chan LC, Wang W, Chan PK, Cai J, Wen C. Radiomics signature of osteoarthritis: Current status and perspective. J Orthop Translat. 2024 Mar 16; 45:100-106. https://doi.org/10.1016/j.jot.2023.10.003. PMID: 38524869; PMCID: PMC10958157.

16. Wang VM, Cheung CA, Kozar AJ, Huang B. Machine Learning Applications in Orthopaedic Imaging. J Am Acad Orthop Surg. 2020 May 15;28(10):e415-e417. https://doi.org/10.5435/JAAOS-D-19-00688. PMID: 32053527; PMCID: PMC7247552.

17. Wang C.T., Huang B., Thogiti N., et al. Successful real-world application of an osteoarthritis classification deep-learning model using 9210 knees-An orthopedic surgeon's view. J Orthop Res. 2023 Apr;41(4):737-746. https://doi.org/10.1002/jor.25415

18. Svidetel'stvo o gosudarstvennoy registratsii programmy dlya EVM № 2025610804 Rossiyskaya Fede-ratsiya. Platforma podgotovki naborov dannykh: № 2024691653: zayavl. 20.12.2024: opubl. 14.01.2025 / Yu. A. Vasil'ev, A. V. Vladzimirskiy, O. V. Omelyanskaya [i dr.]; zayavitel' Gosudarstvennoe byudzhetnoe uchrezhdenie zdravookhraneniya goroda Moskvy «Nauchno-prakticheskiy klinicheskiy tsentr diagnostiki i telemeditsinskikh tekhnologiy Departamenta zdravookhraneniya goroda Moskvy. (In Russ.)

19. Smirnov A.V. Atlas rentgenologicheskoy diagnostiki pervichnogo osteoartroza. M.: IMA-PRESS, 2010:40. (In Russ.)

20. Obshchie rekomendatsii po opisaniyu pervichnykh i povtornykh KT, MRT, rentgenologicheskikh issledovaniy: Metodicheskie rekomendatsii. Moskva: Gosudarstvennoe byudzhetnoe uchrezhdenie zdravookhraneniya goroda Moskvy "Nauchno-prakticheskiy tsentr meditsinskoy radiologii Departamenta zdravookhra-neniya goroda Moskvy", 2017;19. (Luchshie praktiki luchevoy i instrumental'noy diagnostiki). (In Russ.)

21. Vasil'ev YuA, Vladzymyrskyy AV, Bondarchuk DV, Kozhikhina DD, Reshetnikov RV, Blokhin IA, et al. The importance of artificial intelligence technologies for the prevention of defects in the work of a radiologist. Vrach i informatsionnye tekhnologii. 2023; 2: 16-27. (In Russ.) https://doi.org/10.25881/18110193_2023_2_16

22. Vasil'ev YuA, Gusev AV, Mikhaylova AA, Sharova DE, Vladzymyrskyy AV. Ethical principles for the development of artificial intelligence systems for healthcare. Vrach i informatsionnye tekhnologii. 2023; 4: 36-41. (In Russ.) https://doi.org/10.25881/18110193_2023_4_36

23. Baeva AV. The epistemic status of artificial intelligence in medical practices: ethical challenges. Digital Diagnostics. 2024;5(1):120–132. (In Russ.) https://doi.org/10.17816/DD625319


Review

For citations:


Astapenko E.V., Vladzimirskiy A.V. Morphometric parameters of the knee joint: completeness and quality of assessment according to radiography. Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2025;15(4):237-242. (In Russ.) https://doi.org/10.20340/vmi-rvz.2025.4.MIM.1

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-762X (Print)
ISSN 2782-1579 (Online)