Proton magnetic resonance spectroscopy (1h-magnetic resonance spectroscopy) in assessing metabolic changes in the perifocal zone in high-grade gliomas (literature review)
https://doi.org/10.20340/vmi-rvz.2025.4.MIM.3
Abstract
Background. High-grade gliomas are characterized by infiltrative growth with possible presence of tumor cells in the perifocal zone, which creates difficulties in determining the true tumor boundaries when using standard MRI diagnostic methods.
Objective: To present a review of current publications on the application of proton magnetic resonance spectroscopy (¹H-MRS) in assessing metabolic changes in the perifocal zone in high-grade gliomas.
Materials and methods. A systematic analysis of publications in PubMed, Scopus, eLibrary and Google Scholar databases for the period 2015-2024 was conducted using keywords: "¹H-MRS", "high-grade glioma", "glioblastoma", "peritumoral zone", "metabolic changes".
Results. Proton MR spectroscopy allows detection of metabolic disorders in the perifocal zone of gliomas, including increased choline (Cho) levels, decreased N-acetylaspartate (NAA) and appearance of lactate (Lac). The most significant prognostic markers are elevated Cho/NAA ratios >1.99 and Cho/Cr ratios >1.73, which correlate with early tumor recurrence and presence of infiltrating tumor cells in noncontrast enhancing zones.
Conclusion. Integration of ¹H-MRS into the clinical protocol for evaluating high-grade gliomas improves diagnostic accuracy, enhances surgical and radiation therapy planning, and allows optimization of personalized treatment approaches for patients
About the Authors
A. S. SidorinaRussian Federation
Anastasiya S. Sidorina, Radiologist at the Department of Magnetic Resonance Imaging, postgraduate student at the Department of Radiation Diagnostics and Medical Imaging at the Clinic of the of the Institute of Medical Education
Author’s contribution: scientific justification, methodology, data verification, data analysis, analysis of literary sources.
Akkuratova St., 2. St. Petersburg, 197341
Competing Interests:
The authors declare no competing interests.
N. V. Prosalova
Russian Federation
Nataliya V. Prosalova, Radiologist at the Department of Radiation Diagnostics
Author's contribution: scientific substantiation, methodology, data verification, data analysis, analysis of literary sources.
Leningradskaya St., 68A, village Pesochny, St. Petersburg, 197758
Competing Interests:
The authors declare no competing interests.
D. D. Dorokhova
Russian Federation
Daria D. Dorokhova, Resident of the Department of Radiation Diagnostics and Medical Imaging with the clinic of the Institute of Medical Education
Author's contribution: collecting and processing material, writing and editing text.
Akkuratova St., 2. St. Petersburg, 197341
Competing Interests:
The authors declare no competing interests.
M. Yu. Prokudin
Russian Federation
Mikhail Yu. Prokudin, Cand. Sci. (Med.), Assistant Professor at the Department of Nervous Diseases
Author's contribution: collecting and processing material, writing and editing text.
Academician Lebedev St., 6, lit. Zh, St. Petersburg, 194044
Competing Interests:
The authors declare no competing interests.
B. V. Martynov
Russian Federation
Boris V. Martynov, Dr. Sci. (Med.), Docent, Neurosurgeon at the Department of Neurosurgery
Author's contribution: collecting and processing material, writing and editing text.
Academician Lebedev St., 6, lit. Zh, St. Petersburg, 194044
Competing Interests:
The authors declare no competing interests.
A. V. Ryzhkov
Russian Federation
Anton V. Ryzhkov, Radiologist of the highest category, Head of the Magnetic Resonance Imaging Department
Author's contribution: collecting and processing material, writing and editing text.
Akkuratova St., 2. St. Petersburg, 197341
Competing Interests:
The authors declare no competing interests.
G. E. Trufanov
Russian Federation
Gennadiy E. Trufanov, Dr. Sci. (Med.), Professor of the Department of Radiology Diagnostics and Medical Imaging with the clinic of the Institute
Author's contribution: research concept, scientific editing of the article.
Akkuratova St., 2. St. Petersburg, 197341
Competing Interests:
The authors declare no competing interests.
References
1. Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncology. 2021;23(8):1231-1251. https://doi.org/10.1093/neuonc/noab106
2. Shukla G., Alexander G.S., Bakas S., Nikam R., Talekar K., Palmer J.D. et al. Advanced magnetic resonance imaging in glioblastoma: a review. Chinese Clinical Oncology. 2017;6(4):40. https://doi.org/doi: 10.21037/cco.2017.06.28
3. Zakharova N.E., Batalov A.I., Pogosbekyan E.L., Goryaynov S.A., Fadeeva L.M., Bykanov A.E., Tyurina A.N., Chekhonin I.V., Galstyan S.A., Pronin I.N., Usachev D.Yu. Magnetic Resonance Imaging in Studies of Perifocal Zone of Brain Gliomas (a Literature Review). Radiology - Practice. 2024;(1):20-36. (In Russ.) https://doi.org/10.52560/2713-0118-2024-1-20-36
4. Zhukova T.V., Shanko Yu.G., Beletsky A.V., Ivanova N.E., Zabrodskaya Yu.M., Sitovskaya D.A., Zrelov A.A., Shirinsky A.A. Pathomorphological assessment of the peritumorous zone of highly malignant gliomas as a criterion for minimizing the volume of surgical intervention (original research). Neurology and Neurosurgery. Eastern Europe. 2022; 12(1):17-28. (In Russ.) https://doi.org/10.34883/PI.2022.12.1.043
5. Zhukova T.V., Shan’ko Yu.G., Beletskiy A.V., Shirinskiy A.A., Ryabtseva S.N., Ivanova N.E., Nechaeva A.S., Potemkina Ye.G., Vorob’yeva O.M., Sitovskaya D.A., Zrelov A.A., Zabrodskaya Yu.M. Determination of the volume of surgical intervention for high-grade gliomas, taking into account the characteristics of the peritumorous zone. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2021;13(4):29-37. (In Russ.)
6. Torp S.H., Solheim O., Skjulsvik A.J. The WHO 2021 Classification of Central Nervous System tumours: a practical update on what neurosurgeons need to know - a minireview. Acta Neurochirurgica. 2022;164(9):2453-2464. https://doi.org/10.1007/s00701-022-05301-y
7. Garanina N.V., Dolgushin M.B., Lapteva M.G., Fadeeva L.M., Sashin D.V. Peculiarities of the Application of Diffusion-Curtosis MRI in the Differential Diagnosis of Glial Brain Tumors and Solitary Metastasis. Journal of oncology: diagnostic radiology and radiotherapy. 2023;6(1):26-40. (In Russ.) https://doi.org/10.37174/2587-7593-2023-6-1-26-40
8. Cui Y., Zeng W., Jiang H., Ren X., Lin S., Fan Y. et al. Ratio in Postoperative Peritumoral Edema Zone Is Associated With Earlier Recurrence of Glioblastoma. Frontiers in Neurology. 2020;4(11):592155. https://doi.org/10.3389/fneur.2020.592155
9. Liu H., Zhang Q., Niu S., Liu H. Value of Magnetic Resonance Images and Magnetic Resonance Spectroscopy in Diagnosis of Brain Tumors under Fuzzy C-Means Algorithm. Contrast Media & Molecular Imaging. 2022;2022(1):331512. https://doi.org/10.1155/2022/3315121
10. Egerton A. The potential of 1H-MRS in CNS drug development. Psychopharmacology. 2021;238(5):1241-1254. https://doi.org/10.1007/s00213-019-05344-7
11. Aida N. 1H-MR spectroscopy of the early developmental brain, neonatal encephalopathies, and neurometabolic disorders. Magnetic Resonance in Medical Sciences. – 2022;21(1):9-28. https://doi.org/10.2463/mrms.rev.2021-0055
12. Pellegatta S., Valletta L., Corbetta C., Patanè M., Zucca I., Riccardi Sirtori F. et al. Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta neuropathologica communications. 2015;3(4):1-12. https://doi.org/10.1186/s40478-014-0180-0
13. Padelli F., Mazzi F., Erbetta A., Chiapparini L., Doniselli F.M., Palermo S. et al. In vivo brain MR spectroscopy in gliomas: clinical and preclinical chances. Clinical and Translational imaging. 2022;10(5):495-515. https://doi.org/10.1007/s40336-022-00502-y
14. Fairgrieve-Park L., Fallone C.J., Yahya A. Long TE PRESS and STEAM for measuring the triglyceride glycerol CH₂ protons at 3T. NMR in Biomedicine. 2019;32(2):e4021. https://doi.org/10.1002/nbm.4021
15. Tal A., Gonen O. Spectroscopic localization by simultaneous acquisition of the double-spin and stimulated echoes. Magnetic Resonance in Medicine. 2015;73(1):31–43. https://doi.org/10.1002/mrm.25112
16. Ballestín A., Armocida D., Ribecco V., Seano G. Peritumoral brain zone in glioblastoma: Biological, clinical and mechanical features. Frontiers in Immunology. 2024;15:1347877. https://doi.org/10.3389/fimmu.2024.1347877
17. Cordova J.S., Shu H-K.G., Liang Z., Gurbani S.S., Cooper L.A.D., Holder C.A. et al. Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients. Neuro-oncology. 2016;18(8):1180–9. https://doi.org/10.1093/neuonc/now036
18. Tarnawski R., Sokol M., Pieniazek P., Maciejewski B., Walecki J., Miszczyk L. et al. 1H-MRS in vivo predicts the early treatment outcome of postoperative radiotherapy for malignant gliomas. International Journal of Radiation Oncology, Biology, Physics. 2002;52(5):1271–6. https://doi.org/10.1016/S0360-3016(01)02769-9
19. Tolia M., Verganelakis D., Tsoukalas N., Kyrgias G., Papathanasiou M., Mosa E. et al. Prognostic value of MRS metabolites in postoperative irradiated high grade gliomas. BioMed Research International. 2015;(2015):341042. https://doi.org/10.1155/2015/341042
20. Ruiz-Rodado V., Brender J.R., Cherukuri M.K., Gilbert M.R., Larion M. Magnetic resonance spectroscopy for the study of cns malignancies. Progress in Nuclear Magnetic Resonance Spectroscopy. 2021;122:23-41. https://doi.org/10.1016/j.pnmrs.2020.11.001
21. Ikeguchi R., Shimizu Y., Abe K., Shimizu S., Maruyama T., Nitta M. et al. Proton magnetic resonance spectroscopy differentiates tumefactive demyelinating lesions from gliomas. Multiple Sclerosis and Related Disorders. 2018;26:77-84. https://doi.org/10.1016/j.msard.2018.08.025
22. Lu W., Jin F., Zou Y., Liu Y., Gao P., Zhao Y. et al. 1H-MRS parameters in non-enhancing peritumoral regions can predict the recurrence of glioblastoma. Scientific Reports. 2024;14 - 292958. https://doi.org/10.1038/s41598-024-80610-z
23. Crain I.D., Elias P.S., Chapple K., Schek A.C., Karis J.P., Preul Mark C. Improving the utility of 1H-MRS for the differentiation of glioma recurrence from radiation necrosis. Journal of Neuro-oncology. 2017;133(1):97-105. https://doi.org/10.1007/s11060-017-2407-y
24. Feng A., Yuan P., Huang T., Li L., Lyu J. Distinguishing tumor recurrence from radiation necrosis in treated glioblastoma using multiparametric MRI. Academic Radiology. 2022;29(9):1320-1331. https://doi.org/10.1016/j.acra.2021.11.008.
25. Henning A. Proton and multinuclear MR spectroscopy in the human brain at ultra-high field: a review. NeuroImage. 2018;168:181-198. https://doi.org/10.1016/j.neuroimage.2017.06.046.
26. Aamir M., Rahman Z., Bhatti U.A., Abro W.A., Bhutto J.A., He Z. An automated deep learning framework for brain tumor classification using MRI imagery. Scientific Reports. 2025;15(1):17593. https://doi.org/10.1038/s41598-025-02209-2.
27. Hangel G., Schmitz-Abecassis B., Sollmann N., Pinto J., Arzanforoosh F., Barkhof F. et al., Advanced MR Techniques for Preoperative Glioma Characterization: Part 2. Journal of Magnetic Resonance Imaging. 2023;57(4):1676-1695. https://doi.org/10.1002/jmri.28663.
28. Maslov N.E., Trufanov G.E., Moiseenko V.M., Valenkova D.A., Efimtsev A.Yu., Plakhotina N.A., Sidorina A.S. Radiogenomic approach to glial tumors imaging under conditions of initial diagnostic measures: adaptation principles development. Bulletin of the Medical Institute "REAVIZ" (Rehabilitation, Doctor and Health). 2024;14(1):168-176. (In Russ.) https://doi.org/10.20340/vmi-rvz.2024.1.MIM.3
Supplementary files
Review
For citations:
Sidorina A.S., Prosalova N.V., Dorokhova D.D., Prokudin M.Yu., Martynov B.V., Ryzhkov A.V., Trufanov G.E. Proton magnetic resonance spectroscopy (1h-magnetic resonance spectroscopy) in assessing metabolic changes in the perifocal zone in high-grade gliomas (literature review). Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2025;15(4):255-263. (In Russ.) https://doi.org/10.20340/vmi-rvz.2025.4.MIM.3

















