Cobalamin deficiency and pathogenesis of neurological disorders
https://doi.org/10.20340/vmi-rvz.2021.6.PHYS.1
Abstract
The brief review deals with the specific value of B vitamins for the nervous system, the mechanisms of transport and metabolic functions of cobalamin, pathogenetic theories related to vitamin B12 deficiency such as canonical biochemical theory and the theory of dysregulation of cytokines and growth factors; the hyperhomocysteinemic component of cerebral small vessel disease as one of the most common types of degenerative disorders of the central nervous system has been mentioned; the types of disorders associated with cobalamin deficiency that underlie its neurological manifestations have been described.
Keywords
About the Authors
A. V. PeresheinRussian Federation
Nizhny Novgorod
Competing Interests:
The author declare no competing interests.
S. V. Kuznetsova
Russian Federation
Nizhny Novgorod
Competing Interests:
The author declare no competing interests.
T. E. Potemina
Russian Federation
Nizhny Novgorod
Competing Interests:
The author declare no competing interests.
References
1. Zinovieva O.E., Emelyanova A.Yu., Kozhev A.I. et al. Neurological manifestations of vitamin B12 deficiency. Effective pharmacotherapy. 2021;17(6):22-28. (In Russ). https://doi.org/10.33978/2307-3586-2021-17-6-22-28
2. Pavlov Ch.S., Damulin I.V., Shulpekova Yu.O., Andreev E.A. Neurological disorders with vitamin B12 deficiency. Therapeutic archive. 2019;91(4):122-129. (In Russ). https://doi.org/10.26442/00403660.2019.04.000116
3. Charlton C.G. Methylation reactions at dopaminergic nerve endings, serving as biological off-switches in managing dopaminergic functions. Neur Regenerat Res. 2014;9(11):1110-1. https://doi.org/10.4103/16735374.135310
4. Moore Eileen, Mander Alastair, Ames David, Carne Ross and al. Cognitive impairment and vitamin B12: a review. Int Psychogeriat. 2012;24(4):541-556. https://doi.org/10.1017/S1041610211002511
5. Fernandes C.G., Borges C.G., Seminotti B., Amaral A.U. and al. Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats. Cell Mol Neurobiol. 2011;31(5):775-785. https://doi.org/10.1007/s10571-011-9675-4
6. Pezacka E.H., Jacobsen D.W., Luce K., Green R. Glial cells as a model for the role of cobalamin in the nervous system: impaired synthesis of cobalamin coenzymes in cultured human astrocytes following shortterm cobalamin-deprivation. Biochem Biophys Res Comun. 1992;184(2):832-839. https://doi.org/10.1016/0006-291x(92)90665-8
7. Hassel B., Sonnewald U. Glial formation of pyruvate and lactate from TCA cycle intermediates: implications for the inactivation of transmitter amino acids? J Neurochem. 1995;65(5):2227-34. https://doi.org/10.1046/j.1471-4159.1995.65052227.x
8. Health Quality Ontario. Vitamin B12 and cognitive function: an evidence-based analysis. Ont Health Tech Assess Ser [Internet]. 2013;13(23):1-45. PMID: 24379897
9. Herrmann W., Obeid R. Causes and Early Diagnosis of Vitamin B12 Deficiency. Dtsch Arztebl Int. 2008;105(40):680-685. https://doi.org/10.3238/arztebl.2008.0680
10. Moretti R., Giuffré M., Caruso P., Gazzin S., Tiribelli C. Homocysteine in Neurology: A Possible Contributing Factor to Small Vessel Disease. Int. J. Mol. Sci. 2021;22(4):2051. https://doi.org/10.3390/ijms22042051
11. Scalabrino G., Mutti E., Veber D. and al. Increased spinal cord NGF levels in rats with cobalamin (vitamin B12) deficiency. Neurosci Lett. 2006;396(2):153-158. https://doi.org/10.1016/j.neulet.2005.11.029
12. Kennedy David O. B Vitamins and the Brain: Mechanisms, Dose and Efficacy–A Review. Nutrients. 2016;8(2):68. https://doi.org/10.3390/nu8020068
13. Narasimhan P., Sklar R., Murrell M., Swanson R.A., Sharp F.R. Methyl-malonyl-CoA Mutase Induction by Cerebral Ischemia and Neurotoxicity of the Mitochondrial Toxin Methylmalonic Acid. J Neurosci. 1996;16(22):7336-46. PMID: 8929440. PMCID: PMC6578931. https://doi.org/10.1523/JNEUROSCI.16-22-07336.1996
14. Andrade V.M., Pont Dal H.S., Leffa D.D., Damiani A.P. and al. Methylmalonic acid administration induces DNA damage in rat brain and kidney. Mol Cell Biochem. 2014;391(1-2):137-145. https://doi.org/10.1007/s11010-014-1996-4
15. Metz J. Cobalamin deficiency and the pathogenesis of nervous system disease. Ann Rev Nutr. 1992;12:59-79. https://doi.org/10.1146/annurev.nu.12.070192.000423
16. Razak M.A., Begum P.S., Viswanath B., Rajagopal S. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review. Oxidat Med Cell Long. 2017;2017:1716701. https://doi.org/10.1155/2017/1716701
17. Okun J.G., Horster F., Farkas L.M., Feyh P. and al. Neurodegeneration in methylmalonic aciduria involves inhibition of complex II and the tricarboxylic acid cycle, and synergistically acting excitotoxicity. J Biol Chem. 2002;277(17):14674-80. https://doi.org/10.1074/jbc.M200997200
18. Scalabrino G., Veber D., Tredici G. Relationships between cobalamin, epidermal growth factor, and normal prions in the myelin maintenance of central nervous system. Int J Biochem. 2014;55:232-241. https://doi.org/10.1016/j.biocel.2014.09.011
19. Scalabrino G. The multi-faceted basis of vitamin B12 (cobalamin) neurotropism in adult central nervous system: Lessons learned from its deficiency. Progr Neurobiol. 2009;88(3):203-220. https://doi.org/10.1016/j.pneurobio.2009.04.004
20. Bala P.A., Foster J., Carvelli L., Henry L.K. SLC6 Transporters: Structure, Function, Regulation, Disease Association and Therapeutics. Mol Asp Med. 2013;34(2-3):197-219. https://doi.org/10.1016/j.mam.2012.07.002
21. Solomon L.R. Disorders of cobalamin (vitamin B12) metabolism: emerging concepts in pathophysiology, diagnosis and treatment. Blood Rev. 2007;21:113-130. PMID: 16814909. https://doi.org/10.1016/j.blre.2006.05.001
Review
For citations:
Pereshein A.V., Kuznetsova S.V., Potemina T.E. Cobalamin deficiency and pathogenesis of neurological disorders. Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2021;(6):21-32. (In Russ.) https://doi.org/10.20340/vmi-rvz.2021.6.PHYS.1