Preview

Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH)

Advanced search

PRODUCTION AND BIOCOMPATIBILITY EVALUATION OF A THREE-DIMENSIONAL BIOACTIVE MATRIX WITH SPECIFIED PROPERTIES BASED ON DECELLULARIZED HETEROLOGOUS BONE TISSUE

Abstract

The development of new implantable materials for bone regeneration remains a challenging task that is currently being considered from the perspective of tissue engineering. Such products should consist of bioactive threedimensional matrix containing either cells or biologically active proteins, including growth factors, signaling molecules, or specific genes and/or their products. The paper presents a fragment of results obtained within studies on technology of creation and ways to achieve significant qualitative and quantitative parameters of such a matrix and studies evaluating biocompatibility in vivo using the original model of a critical bone defect.

About the Authors

Yu. V. Ponomareva
Private Institution of Higher Education ‘Medical University ‘Reaviz’
Russian Federation
Samara


M. N. Milyakova
Private Institution of Higher Education ‘Medical University ‘Reaviz’
Russian Federation
Samara


N. N. Sarbaeva
Private Institution of Higher Education ‘Medical University ‘Reaviz’
Russian Federation
Samara


A. E. Atrashkova
Private Institution of Higher Education ‘Medical University ‘Reaviz’
Russian Federation
Samara


A. A. Supilnikov
Private Institution of Higher Education ‘Medical University ‘Reaviz’
Russian Federation
Samara


V. A. Vankov
Private Institution of Higher Education ‘Medical University ‘Reaviz’
Russian Federation
Samara


References

1. Dimitriou R., Jones E., Mc Gonagle D., Giannoudis P.V. Bone regeneration: current concepts and future directions // BMC Med. – 2011. – Vol. 966.

2. Reich K.M., Huber C.D., Lippnig W.R., Ulm C., Watzek G., Tangl S. Atrophy of the residual alveolar ridge following tooth loss in an historical population // Oral Dis. – 2011. – Vol. 17 (1). – P. 33-44.

3. Chen Y. Orthopaedic application of gene therapy // J Orthop Sci. – 2001. – Vol. 6. – P. 199–207.

4. Calori G.M., Donati D., Di Bella C., Tagliabue L. Bone morphogenetic proteins and tissue engineering: future directions // Injury. – 2009. – P. 40 (Suppl 3). – P. S67–76.

5. Winkler T., Sass F.A., Duda G.N., Schmidt-Bleek K. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge // Bone Joint Res. – 2018. – Vol. 7(3). – P. 232-243.

6. Kumar P., Vinitha B., Fathima G. Bone grafts in dentistry // J Pharm Bioallied Sci. – 2013. – Vol. 5 (Suppl. 1). – P. S125–S127.

7. Sharma P., Kumar P., Sharma R., Bhatt V.D., Dhot P.S. Tissue Engineering; Current Status & Futuristic Scope // J Med Life. – 2019. – Vol. 12 (3). – P. 225-229.

8. Rodríguez-Ares M.T., López-Valladares M.J., Touriño R., Vieites B., Gude F., Silva M.T., Couceiro J. Effects of lyophilization on human amniotic membrane // Acta Ophthalmol. – 2009 – Vol. 87(4). – P. 396-403.

9. Bonarcev A.P., Muraev A.A., Deev R.V., Volkov A.V. Material-associirovannaya kostnaya rezorb-ciya // STM. – 2018. – T. 10, № 4. – S. 26–33.


Review

For citations:


Ponomareva Yu.V., Milyakova M.N., Sarbaeva N.N., Atrashkova A.E., Supilnikov A.A., Vankov V.A. PRODUCTION AND BIOCOMPATIBILITY EVALUATION OF A THREE-DIMENSIONAL BIOACTIVE MATRIX WITH SPECIFIED PROPERTIES BASED ON DECELLULARIZED HETEROLOGOUS BONE TISSUE. Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2020;(3):5-14. (In Russ.)

Views: 264


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-762X (Print)
ISSN 2782-1579 (Online)