Preview

Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH)

Advanced search

Bronchial asthma and chronic obstructive pulmonary disease: diagnostic capabilities in a doctor’s practice

https://doi.org/10.20340/vmi-rvz.2024.1.CLIN.6

Abstract

The article discusses the possibilities of functional diagnostics of the respiratory function of the lungs in patients with bronchial asthma and chronic obstructive pulmonary disease. Functional diagnostic methods such as capnometry, spirometry, assessment of lung diffusivity and multiple breath nitrogen washout can be used not only to assess airway dysfunction, but also to monitor the course of the disease. There is a need for further development of methods for studying the respiratory function of the lungs and, if possible, their introduction into everyday clinical practice. The purpose of this review was the possibility of diagnostic tests to assess the ventilation and gas exchange function of the lungs in patients with bronchial asthma and chronic obstructive pulmonary disease.

About the Authors

A. I. Mikhaylovicheva
Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies
Russian Federation

Anna I. Mikhailovich - Doctor of Functional Diagnostics of the Academy of Postgraduate Education, 

Orekhovy Boulevard, 28, Moscow, 115682



V. V. Smirnov
Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies
Russian Federation

Vladimir V. Smirnov - Dr. Sci. (Med.), Professor, Head of the Department of Internal Diseases of the Academy of Postgraduate Education, 

Orekhovy Boulevard, 28, Moscow, 115682



References

1. 1 Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2020. Available from: www.ginasthma.org

2. 2 Global Initiative for Asthma, Global Strategy for Asthma Management and Prevention, 2019. Accessed, www.ginasthma.org. (Accessed 30 July 2019).

3. 3 Van Herck M., Spruit M.A., Burtin C. et al. Fatigue is highly prevalent in patients with asthma and contributes to the burden of disease. J. Clin. Med. 2018;7(12). https://doi.org/10.3390/jcm7120471

4. 4 Kotsiou O.S., Peletidou S., Vavougios G. et al. Exhaled nitric oxide as a marker of chlorine exposure in young asthmatic swimmers. Ann. Allergy Asthma Immunol. 2019;123(3):249–255. https://doi.org/10.1016/j.anai.2019.06.008

5. 5 Vermeulen F., Garcia G., Ninane V., Laveneziana P. Activity limitation and exertional dyspnea in adult asthmatic patients: what do we know? Respir. Med. 2016;117:122–130. https://doi.org/10.1016/j.rmed.2016.06.003

6. 6 Mancuso C.A., Sayles W., Robbins L. et al. Barriers and facilitators to healthy physical activity in asthma patients. J. Asthma. 2006;43(2):137– 143. https://doi.org/10.1080/02770900500498584

7. 7 Lipinska-Ojrzanowska A, Wiszniewska M, Walusiak-Skorupa J. Cough variant asthma: a diagnostic dilemma in the occupational setting. Occup Med. 2015;65(2):165-8. https://doi.org/10.1093/occmed/kqu183

8. 8 Obstructive pulmonary disease in never-smokers: risk factors, pathogenesis, and implications for prevention and treatment Ian. A Yang, Christine R Jenkins, Sundeep S Salvi . https://doi.org/10.1016/S2213-2600(21)00506-3

9. 9 GOLD. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. 2018 report, 2018.

10. 10 Mannino DM, Make BJ. Is it time to move beyond the "O" in early COPD? Eur Respir J. 2015;46:1535–7.

11. 11 Woodruff PG, Barr RG, Bleecker E, et al. Clinical significance of symptoms in smokers with preserved pulmonary function. N Engl J Med. 2016;374:1811–21.

12. 12 Martinez FJ, Han MK, Allinson JP, et al. At the root: Defining and halting progression of early chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2018;197:1540–51.

13. 13 Lange P, Celli B, Agustí A, et al. Lung-Function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med. 2015;373:111–22.

14. 14 Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease GOLD-2020- [cited 2020 Aug 28]. https://goldcopd.org/wp-content/uploads/2019/12/GOLD-2020-FINALver1.2-03Dec19_WMV.pdf

15. 15 Global strategy for asthma management and prevention GINA-2020- [cited 2020 Aug 28]. https://ginasthma.org/wpcontent/uploads/2020/04/GINA-2020-full-report_-fnal-_wms.pdf

16. 16 Miller MR, Crapo R, Hankinson J, Brusasco V, Burgos F, Casaburi R et al. General considerations for lung function testing. Eur Respir J. 2005;26(1):153–61.

17. 17 Mandel JE. Recent advances in respiratory monitory in nonoperating room anesthesia. Curr Opin Anaesthesiol. 2018;31(4):448–452.

18. 18 Kreit JW. Volume capnography in the intensive care unit: potential clinical applications. Ann Am Thorac Soc. 2019;16(4):409–420.

19. 19 Kremeier P, Böhm SH, Tusman G. Clinical use of volumetric capnography in mechanically ventilated patients. J Clin Monit Comput. 2020;34(1):7–16.

20. 20 Pods P.V. Capnometry. Pulmonary functional tests from theory to practice; edited by O.I. Savushkina and A.V. Chernyak. 2017:181–186. (In Russ).

21. 21 Pertzov B., Ronen M., Rosengarten D., Shitenberg D., Heching M., Shostak Y., Mordechai R. Kramer Use of capnography for prediction of obstruction severity in non-intubated COPD and asthma patients. Respir Res. 2021;22:154. https://doi.org/10.1186/s12931-021-01747-3

22. 22 Sun X, Yang W, Gong S, Liang S, Gu S, Lu H, et al. Diagnostic value of volumetric capnography in patients with chronic cough variant asthma. Clinics. 2020;75:e1662. https://doi.org/10.6061/clinics/2020/e1662

23. 23 Krogh M. The diffusion of gases through the lungs of man. J. Physiol. (Lond.). 1914;49(4):271–300.

24. 24 Ogilvie C.M., Forster R.E., Blakemore W.S., Morton J.W. A standardized breath holding technique for the clinical measurement of the diffusing capacity of the lung for carbon monoxide. J. Clin. Invest. 1957;36(1, Pt 1):1–17. https://doi.org/10.1172/JCI103402

25. 25 Forster R.E. Exchange of gases between alveolar air and pulmonary capillary blood: pulmonary diffusing capacity. Physiol. Rev. 1957;37(4):391–452. https://doi.org/10.1152/physrev.1957.37.4.391

26. 26 McGrath M.W., Thomson M.L. The effect of age, body size and lung volume change on alveolar-capillary permeability and diffusing capacity in man. J. Physiol. (Lond.) 1959;146(3):572–582.

27. 27 Neklyudova G.V., Chernyak A.V. The clinical significance of the study of lung diffusion capacity. Pulmonology and allergology. 2013;4. (In Russ).

28. 28 Graham B.L., Brusasco V., Burgos F., Cooper B.G., Jensen R., Kendrick A., MacIntyre N.R., Thompson B.R., Wanger J. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017;49(1):1600016. https://doi.org/10.1183/13993003.00016-2016

29. 29 Chuiyong Pak, Clayton T. Cowl, Jin Hyoung Kim, Byung Ju Kang, Taehoon Lee, Yangjin Jegal, Seung Won Ra, Yangho Kim Reduced Diffusing Capacity in Humidifier Disinfectant-Associated Asthma Versus Typical Asthma: A Retrospective Case Control Study. Journal of Korean Medical Science. 2022. https://doi.org/10.3346/jkms.2022.37.e319

30. 30 Clinical and Prognostic Impact of Low Diffusing Capacity for Carbon Monoxide Values in Patients With Global Initiative for Obstructive Lung Disease I COPD.

31. 31 Juan P. de-Torres, MD, Denis E. O'Donnell, MD, Jose M. Marín, MD, J. Alberto Neder, MD, Jessica Gonzalez-Gutierrez, MD, Bartolome R. Celli, MD, FCCP:April 23, 2021. https://doi.org/10.1016/j.chest.2021.04.033

32. 32 Boutou AK, Shrikrishna D, Tanner RJ, et al. Lung function indices for predicting mortality in COPD. Eur Respir J. 2013;42(3):616-625.

33. 33 Wei X, Ma Z, Yu N, et al. Risk factors predict frequent hospitalization in patients with acute exacerbation of COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:121–129.

34. 34 Fowler WS, Cornish ER, Jr, Kety SS. Lung function studies. VIII. Analysis of alveolar ventilation by pulmonary N2 clearance curves. J Clin Invest. 1952;31(1):40–50. http://dx.doi.org/10.1172/JCI102575

35. 35 Robinson PD, Latzin P, Verbanck S, Hall GL, Horsley A, Gappa M, et al. Consensus statement for inert gas washout measurement using multiple- and single- breath tests. Eur Respir J. 2013;41(3):507–22. http://dx.doi.org/10.1183/09031936.00069712

36. 36 Fuchs O, Latzin P, Thamrin C, Stern G, Frischknecht P, Singer F, et al. Normative data for lung function and exhaled nitric oxide in unsedated healthy infants. Eur Respir J. 2011;37(5):1208–16. http://dx.doi.org/10.1183/09031936.00125510

37. 37 Mahar RK, Vukcevic D, King L, Carlin JB, Ranganathan S. Lack of transparency in software used to analyze multiple breath washout data. Pediatr Pulmonol. 2016;51(11):1108–10. http://dx.doi.org/10.1002/ppul.23420

38. 38 Stanojevic S, Davis SD, Retsch-Bogart G, Webster H, Davis M, Johnson RC, et al. Progression of Lung Disease in Preschool Patients with Cystic Fibrosis. Am J Respir Crit Care Med. 2017;195(9):1216–25.

39. 39 Mustafina M.H., Chernyak A.V. Methods of washing out inert gases: importance in the diagnosis of respiratory diseases. Practical Pulmonology 2014;1:39–44. (In Russ).

40. 40 Neklyudova G.V., Chernyak A.V. Method of nitrogen leaching during multiple respiration in healthy people. Practical pulmonology. 2019;4. (In Russ).


Review

For citations:


Mikhaylovicheva A.I., Smirnov V.V. Bronchial asthma and chronic obstructive pulmonary disease: diagnostic capabilities in a doctor’s practice. Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2024;14(1):77-85. (In Russ.) https://doi.org/10.20340/vmi-rvz.2024.1.CLIN.6

Views: 245


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-762X (Print)
ISSN 2782-1579 (Online)