Experimental search for drugs for the treatment of atrial fibrillation (literature review)
https://doi.org/10.20340/vmi-rvz.2025.3.PHYS.1
Abstract
Atrial fibrillation is the most common cardiac arrhythmia with frequent complications. Despite a century of research and speculation, the mechanisms underlying AF have not been fully elucidated, and therapy, especially for the permanent form, remains suboptimal. The use of modern antiarrhythmic drugs is associated with a significant level of side effects, especially proarrhythmic ones. Many patients with severe atrial fibrillation symptoms do not receive any therapy for rhythm control. In this review, the main focus will be on pharmacological developments in the treatment of atrial fibrillation. We will discuss the current status of some antiarrhythmic drugs and their future potential in the treatment of atrial fibrillation, reviewing the molecular mechanisms and clinical use of some atrial-selective antifibrillatory drugs. We will review in detail the key pharmacodynamic and pharmacokinetic properties of these drugs in order to prevent proarrhythmic effects. As well as drugs that affect atrial remodeling, inflammation and fibrosis, which are being tested as potential treatments for atrial fibrillation.
About the Authors
A. A. AbdullaevRussian Federation
Alijadzhi А. Abdullaev - Dr. Sci. (Med.), Professor, Head of the Department of Cardiology, Emergency Care and General Medical Practice, Faculty of Advanced Training and PPS
Author's contribution: development of the research concept.
Lenin Square, 1, Makhachkala, 367000
Competing Interests:
The authors declare no competing interests.
M. T. Kudaev
Russian Federation
Magomed Т. Kudayev - Dr. Sci. (Med.), Professor, Head of the Department of Therapy, Faculty of Advanced Training and Professional Development
Author's contribution: discussion of results.
Lenin Square, 1, Makhachkala, 367000
Competing Interests:
The authors declare no competing interests.
E. R. Makhmudova
Russian Federation
Elmira R. Makhmudova - Cand. Sci. (Med.), Assistant of the Department of Therapy of Faculty of advanced training and professional retraining of specialists
Author contribution: analysis of literature data.
Lenin Square, 1, Makhachkala, 367000
Competing Interests:
The authors declare no competing interests.
R. G. Khabchabov
Russian Federation
Rustam G. Khabchabov - Cand. Sci. (Med.), Associate Professor of the Department of Cardiology, Emergency Care and General Medical Practice, Faculty of Advanced Training and PPS
Author's contribution: degree of novelty.
Lenin Square, 1, Makhachkala, 367000
Competing Interests:
The authors declare no competing interests.
R. M. Gafurova
Russian Federation
Raziyat M. Gafurova - Doctor of Medical Sciences, Associate Professor of the Department of Cardiology, Emergency Care and General Medical Practice, Faculty of Advanced Training and PPS
Author's contribution: discussion of the obtained results.
Lenin Square, 1, Makhachkala, 367000
Competing Interests:
The authors declare no competing interests.
U. A. Islamova
Russian Federation
Ummet A. Islamova - Islamova Ummet Abdulkhakimovna Cand. Sci. (Med.), Associate Professor of the Department of Cardiology, Emergency Care and General Medical Practice, Faculty of Advanced Training and PPS
Author's contribution: data processing
Lenin Square, 1, Makhachkala, 367000
Competing Interests:
The authors declare no competing interests.
A. A. Anatova
Russian Federation
Aminat A. Anatova - Cand. Sci. (Med.), Assistant Professor, Department of Cardiology, Emergency Care and General Medical Practice, Faculty of Advanced Training and PPS
Author's contribution: discussion of the review.
Lenin Square, 1, Makhachkala, 367000
Competing Interests:
The authors declare no competing interests.
M. A. Dzhanbulatov
Russian Federation
Murat A. Dzhanbulatov - Cand. Sci. (Med.), Associate Professor of the Department of Dentistry, Faculty of Advanced Training and PPS
Author's contribution: review design.
Lenin Square, 1, Makhachkala, 367000
Competing Interests:
The authors declare no competing interests.
A. M. Abdullaeva
Russian Federation
Abdullaeva Aida Muradovna - Student of the medical faculty, 4th group, 6th year
Author's contribution: Information retrieval.
Lenin Square, 1, Makhachkala, 367000
Competing Interests:
The authors declare no competing interests.
References
1. Nattel S. Atrial Electrophysiology and Mechanisms of Atrial Fibrillation. J. Cardiovasc. Pharmacol. Ther. 2003;8:5–11. https://doi.org/10.1177/107424840300800102
2. Ehrlich J.R., Cha T.J., Zhang L., Chartier D., Melnyk P., Hohnloser S.H., Nattel S. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: Action potential and ionic current properties. J. Physiol. 2003;551:801–813. https://doi.org/10.1113/jphysiol.2003.046417
3. Weber K.T., Brilla C.G., Campbell S.E., Guarda E., Zhou G., Sriram K. Myocardial fibrosis: Role of angiotensin II and aldosterone. Angiotensin Heart. 1993;88:107–124. https://doi.org/10.1007/978-3-642-72497-8_8
4. Harada M., Van Wagoner D.R., Nattel S. Role of Inflammation in Atrial Fibrillation Pathophysiology and Management. Circ. J. 2015;79:495–502. https://doi.org/10.1253/circj.CJ-15-0138
5. Voigt N., Dobrev D. The biology of human pulmonary veins: Does it help us to better understand AF pathophysiology in patients? Heart Rhythm. 2013;10:392–393. https://doi.org/10.1016/j.hrthm.2012.12.010
6. Santangeli P., Marchlinski F.E. Techniques for the provocation, localization, and ablation of non-pulmonary vein triggers for atrial fibrillation. Heart Rhythm. 2017;14:1087–1096. https://doi.org/10.1016/j.hrthm.2017.02.030
7. Nagarakanti R., Ung K., Strahan H. Critical Role of the Posterior Left Atrium in the Perpetuation of Persistent Atrial Fibrillation and the Hybrid Ablation Approach for Persistent Atrial Fibrillation Management: A Single-center Outcomes Study. J. Innov. Card. Rhythm Manag. 2018;9:3372. https://doi.org/10.19102/icrm.2018.091003
8. Kistler P. M., Chieng D., Sugumar H., Ling L. H., Segan L., Azzopardi S., Al-Kaisey A., Parameswaran R., Anderson R. D., Hawson J., et al. Effect of Catheter Ablation Using Pulmonary Vein Isolation With vs Without Posterior Left Atrial Wall Isolation on Atrial Arrhythmia Recurrence in Patients With Persistent Atrial Fibrillation The CAPLA Randomized Clinical Trial. JAMA. 2023;329:127–135. https://doi.org/10.1001/jama.2022.23722
9. Sauer W. H., Alonso C., Zado E., Cooper J. M., Lin D., Dixit S., Russo A., Verdino R., Ji S., Gerstenfeld E. P., et al. Atrioventricular nodal reentrant tachycardia in patients referred for atrial fibrillation ablation: Response to ablation that incorporates slow-pathway modification. Circulation. 2006;114:191–195. https://doi.org/10.1161/CIRCULATIONAHA.106.621896
10. Moe G.K., Abildskov J.A. Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. Am. Heart J. 1959;58:59. https://doi.org/10.1016/0002-8703(59)90274-1
11. Allessie M.A., de Groot N.M., Houben R.P., Schotten U., Boersma E., Smeets J.L., Crijns H.J. Electropathological substrate of long-standing persistent atrial fibrillation in patients with structural heart disease: Longitudinal dissociation. Circ. Arrhythmia Electrophysiol. 2010;3:606–615. https://doi.org/10.1161/CIRCEP.109.910125
12. Jalife J., Berenfeld O., Mansour M. Mother rotors and fibrillatory conduction: A mechanism of atrial fibrillation. Cardiovasc. Res. 2002;54:204–216. https://doi.org/10.1016/S0008-6363(02)00223-7
13. Aronis K.N., Berger R.D., Ashikaga H. Rotors How Do We Know When They Are Real? Circ. Arrhythmia Electrophysiol. 2017;10:e005634. https://doi.org/10.1161/CIRCEP.117.005634
14. Narayan S.M., Krummen D.E., Shivkumar K., Clopton P., Rappel W.J., Miller J.M. Treatment of Atrial Fibrillation by the Ablation of Localized Sources CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation). J. Am. Coll. Cardiol. 2012;60:628–636. https://doi.org/10.1016/j.jacc.2012.05.022
15. Parameswaran R., Voskoboinik A., Gorelik A., Lee G., Kistler P.M., Sanders P., Kalman J.M. Clinical impact of rotor ablation in atrial fibrillation: A systematic review. Europace. 2018;20:1099–1106. https://doi.org/10.1093/europace/eux370
16. Cuculich P. S., Wang Y., Lindsay B. D., Faddis M. N., Schuessler R. B., Damiano R. J., Jr., Li L., Rudy Y. Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation. 2010;122:1364–1372. https://doi.org/10.1161/CIRCULATIONAHA.110.945709
17. Ausma J., Wijffels M., Thoné F., Wouters L., Allessie M., Borgers M. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation. 1997;96:3157–3163. https://doi.org/10.1161/01.CIR.96.9.3157
18. Frustaci A., Chimenti C., Bellocci F., Morgante E., Russo M.A., Maseri A. Histological substrate of atrial biopsies in patients with single atrial fibrillation. Circulation. 1997;96:1180–1184. https://doi.org/10.1161/01.CIR.96.4.1180
19. Wijesurendra R. S., Casadei B. Mechanisms of atrial fibrillation. Heart. 2019;105:1860–1867. https://doi.org/10.1136/heartjnl-2018-314267.
20. Tahhan A.S. Association between oxidative stress and atrial fibrillation. Heart Rhythm. 2017;14:1849–1855. https://doi.org/10.1016/j.hrthm.2017.07.028
21. Rahmutula D., Marcus G.M., Wilson E.E., Ding C.H., Xiao Y., Paquet A.C. Molecular basis of selective atrial fibrosis due to overexpression of transforming growth factor-beta1. Cardiovasc. Res. 2013;99:769–779. https://doi.org/10.1093/cvr/cvt074
22. Tan A.Y., Zimetbaum P. Atrial fibrillation and atrial fibrosis. Cardiovasc. Pharmacol. 2011;57:625–629. https://doi.org/10.1097/FJC.0b013e3182073c78
23. Harada M., Luo X., Qi X.Y., Tadevosyan A., Maguy A., Ordog B., Ledoux J., Kato T., Naud P., Voigt N., et al. Transient Receptor Potential Canonical-3 Channel–Dependent Fibroblast Regulation in Atrial Fibrillation. Circulation. 2012;126:2051–2064. https://doi.org/10.1161/CIRCULATIONAHA.112.121830
24. Yoo S., Aistrup G., Shiferaw Y., Ng J., Mohler P.J., Hund T.J., Waugh T., Browne S., Gussak G., Gilani M., et al. Oxidative stress creates a unique CaMKII-mediated substrate for atrial fibrillation in heart failure. JCI Insight. 2018;3:e120728. https://doi.org/10.1172/jci.insight.120728
25. Ho E., Galougahi K.K., Liu C.C., Bhindi R., Figtree G.A. Biological markers of oxidative stress: Applications to cardiovascular research practice. Redox Biol. 2013;1:483–491. https://doi.org/10.1016/j.redox.2013.07.006
26. Sagris M., Vardas E.P., Theofilis P., Antonopoulos A.S., Oikonomou E., Tousoulis D. Antonopoulos, Evangelos Oikonomou and Dimitris Tousoulis Atrial Fibrillation: Pathogenesis, Predisposing Factors, and Genetics. Int. J. Mol. Sci. 2022;23:6. https://doi.org/10.3390/ijms23010006
27. Zaidi Y., Aguilar E.G., Troncoso M., Ilatovskaya D.V., DeLeon-Pennell K.Y. Immune regulation of cardiac fibrosis post myocardial infarction. Cell Signal. 2021;77:109837. https://doi.org/10.1016/j.cellsig.2020.109837
28. Dumitriu I.E., Dimou P., Kaur S., Dinkla S., Kaski J.C., Camm A.J. Increase in inflammatory T cell subsets in atrial fibrillation: The missing link underlying inflammation in AF. Eur. Heart J. 2020;41((Suppl. 2)):ehaa946.3692. https://doi.org/10.1093/ehjci/ehaa946.3692
29. Legere S.A., Haidl I.D., Légaré J.F., Marshall J.S. Mast Cells in Cardiac Fibrosis: New Insights Suggest Opportunities for Intervention. Front. Immunol. 2019;10:580. https://doi.org/10.3389/fimmu.2019.00580
30. Murray D.B., McLarty-Williams J., Nagalla K.T., Janicki J.S. Tryptase activates isolated adult cardiac fibroblasts via protease activated receptor-2 (PAR-2). J. Cell Commun. Signal. 2012;6:45–51. doi:10.1007/s12079-011-0146-y
31. Shiota N., Jin D., Takai S., Kawamura T., Koyama M., Nakamura N. Miyazaki Chymase is activated in the hamster heart following ventricular fibrosis during the chronic stage of hypertension. FEBS Lett. 1997;406:301–304. https://doi.org/10.1016/S0014-5793(97)00295-0
32. Deb B., Ganesan P., Feng R., Narayan S.M. Identifying Atrial Fibrillation Mechanisms for Personalized Medicine. J. Clin. Med. 2021;10:5679. https://doi.org/10.3390/jcm10235679
33. Iwasaki Y.K., Nishida K., Kato T., Nattel S. Atrial Fibrillation Pathophysiology Implications for Management. Circulation. 2011;124:2264–2274. https://doi.org/10.1161/CIRCULATIONAHA.111.019893
34. Heijman J., Voigt N., Nattel S., Dobrev D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ. Res. 2014;114:1483–1499. https://doi.org/10.1161/CIRCRESAHA.114.302226
35. Chaldoupi S.M., Loh P., Hauer R.N., De Bakker J.M., van Rijen H.V. The role of connexin40 in atrial fibrillation. Cardiovasc. Res. 2009;84:15–23. https://doi.org/10.1093/cvr/cvp203
36. Marrouche N. F., Wilber D., Hindricks G., Jais P., Akoum N., Marchlinski F., Kholmovski E., Burgon N., Hu N., Mont L., et al. Association of Atrial Tissue Fibrosis Identified by Delayed Enhancement MRI and Atrial Fibrillation Catheter Ablation The DECAAF Study. JAMA. 2014;311:498–506. https://doi.org/10.1001/jama.2014.3
37. Marrouche N.F., Greene T., Dean J.M., Kholmovski E.G., Boer L.M. D., Mansour M., Calkins H., Marchlinski F., Wilber D., Hindricks G., et al. Efficacy of LGE-MRI-guided fibrosis ablation versus conventional catheter ablation of atrial fibrillation: The DECAAF II trial: Study design. J. Cardiovasc. Electrophysiol. 2021;32:916–924. https://doi.org/10.1111/jce.14957
38. Chen P. S., Chen L. S., Fishbein M. C., Lin S. F., Nattel S. Role of the Autonomic Nervous System in Atrial Fibrillation Pathophysiology and Therapy. Circ. Res. 2014;114:1500–1515. https://doi.org/10.1161/CIRCRESAHA.114.303772
39. Lau D.H., Schotten U., Mahajan R., Antic N.A., Hatem S.N., Pathak R.K., Hendriks J.M.L., Kalman J.M., Sanders P. Novel mechanisms in the pathogenesis of atrial fibrillation: Practical applications. Eur. Heart J. 2016;37:1573–1581. https://doi.org/10.1093/eurheartj/ehv375
40. Stephane N. Hatem and Prashanthan Sanders Epicardial adipose tissue and atrial fibrillation. Cardiovasc. Res. 2014;102:205–213. https://doi.org/10.1093/cvr/cvu045
41. Thanassoulis G., Massaro J.M., O'Donnell C.J., Hoffmann U., Levy D., Ellinor P.T., Wang T.J., Schnabel R.B., Vasan R.S., Fox C.S., et al. Pericardial fat is associated with prevalent atrial fibrillation: The Framingham Heart Study. Circ. Arrhythmia Electrophysiol. 2010;3:345–350. https://doi.org/10.1161/CIRCEP.109.912055
42. Mahajan R., Nelson A., Pathak R.K., Middeldorp M.E., Wong C.X., Twomey D.J., Carbone A., Teo K., Agbaedeng T., Linz D., et al. Electroanatomical Remodeling of the Atria in Obesity: Impact of Adjacent Epicardial Fat. JACC Clin. Electrophysiol. 2018;4:1529–1540. https://doi.org/10.1016/j.jacep.2018.08.014
43. Pathak R.K., Middeldorp M.E., Meredith M., Mehta A.B., Mahajan R., Wong C.X. Long-Term Effect of Goal-Directed Weight Management in an Atrial Fibrillation CohortA Long-Term Follow-Up Study (LEGACY). J. Am. Coll. Cardiol. 2015;65:2159–2169. https://doi.org/10.1016/j.jacc.2015.03.002
44. Yeghiazarians Y., Jneid H., Tietjens J.R., Redline S., Brown D.L., El-Sherif N., Mehra R., Bozkurt B., Ndumele C.E., Somers V.K. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation. 2021;144:e56–e67. https://doi.org/10.1161/CIR.0000000000000988.
45. Voskoboinik A., Prabhu S., Ling L.H., Kalman J.M., Kistler P.M. Alcohol and Atrial Fibrillation. J. Am. Coll. Cardiol. 2016;68:2567–2576. https://doi.org/10.1016/j.jacc.2016.08.074
46. Lubitz S.A., Yin X., Fontes J.D., Magnani J.W., Rienstra M., Pai M. Association Between Familial Atrial Fibrillation and Risk of New-Onset Atrial Fibrillation. JAMA. 2010;304:2263–2269. https://doi.org/10.1001/jama.2010.1690
47. Christophersen I.E., Ellinor P.T. Genetics of atrial fibrillation: From families to genomes. J. Hum. Genet. 2016;61:61–70. https://doi.org/10.1038/jhg.2015.44
48. Nielsen J.B., Graff C., Pietersen A., Lind B., Struijk J.J., Olesen M.S., Haunsø S., Gerds T.A., Svendsen J.H., Køber L., et al. J-shaped association between QTc interval duration and the risk of atrial fibrillation: Results from the Copenhagen ECG Study. J. Am. Coll. Cardiol. 2013;61:2557–2564. https://doi.org/10.1016/j.jacc.2013.03.032
49. Tucker N.R., Ellinor P.T. Ellinor Emerging Directions in the Genetics of Atrial Fibrillation. Circ. Res. 2014;114:1469–1482. https://doi.org/10.1161/CIRCRESAHA.114.302225
50. Li Q., Huang H., Liu G., Lam K., Rutberg J., Green M.S. Gain-of-function mutation of Nav1.5 in atrial fibrillation enhances cellular excitability and lowers the threshold for action potential firing. Biochem. Biophys. Res. Commun. 2009;380:132–137. https://doi.org/10.1016/j.bbrc.2009.01.052
51. Yang Y., Wang M., Zhang X., Tan H.W., Shi H.F., Jiang W.F., Wang X.H., Gang W.Y. GATA4 loss-of-function mutations in familial atrial fibrillation. Clin. Chim. Acta. 2011;412:1825–1830. https://doi.org/10.1016/j.cca.2011.06.017
52. Yang Y.Q., Wang J., Wang X.H., Wang Q., Tan H.W., Zhang M., Shen F.F., Jiang J.Q., Fang W.Y., Liu X. Mutational spectrum of the GATA5 gene associated with familial atrial fibrillation. Int. J. Cardiol. 2012;157:305–307. https://doi.org/10.1016/j.ijcard.2012.03.132
53. Yang Y., Wang X., Tan H.W., Jiang W.F., Fang W.Y., Liu X. Prevalence and spectrum of GATA6 mutations associated with familial atrial fibrillation. Int. J. Cardiol. 2012;155:494–496. https://doi.org/10.1016/j.ijcard.2011.12.091
54. Xie W.H., Chang C., Xu Y.J., Li R.G., Qu X.K., Fang W.Y., Liu X., Yang Y.Q. Prevalence and spectrum of Nkx2.5 mutations associated with idiopathic atrial fibrillation. Clinics. 2013;68:777–784. https://doi.org/10.6061/clinics/2013(06)09
55. Wang J., Zhang D.F., Sun Y.M., Li R.G., Qui X.B., Qu X.K., Liu X., Gang W.Y., Yang Y.Q. NKX2-6 mutation predisposes to familial atrial fibrillation. Int. J. Mol. Med. 2014;34:1581–1590. https://doi.org/10.3892/ijmm.2014.1971
56. Feghaly J., Zakka P., London B., MacRae C.A., Refaat M.M. Genetics of Atrial. J. Am. Heart Assoc. 2018;7:e009884. https://doi.org/10.1161/JAHA.118.009884
57. Chinchilla A., Daimi H., Lozano-Velasco E., Dominguez J.N., Caballero R., Delpón E. PITX2 Insufficiency Leads to Atrial Electrical and Structural Remodeling Linked to Arrhythmogenesis. Circ. Cardiovasc. Genet. 2011;4:269–279. https://doi.org/10.1161/CIRCGENETICS.110.958116
58. Bhatia G.S., Lip G.Y. Atrial Fibrillation Post-Myocardial Infarction: Frequency, Consequences and Management. Curr. Heart Fail. Rep. 2004;1:149–155. https://doi.org/10.1007/s11897-004-0002-y
59. Soliman E. Z., Safford M. M., Muntner P., Khodneva Y., Dawood F. Z., Zakai N. A., Thacker E. L., Judd S., Howard V. J., Howard G., et al. Atrial fibrillation and the risk of myocardial infraction. JAMA Intern. Med. 2014;174:107–114. https://doi.org/10.1001/jamainternmed.2013.11912
60. Schmitt J., Duray G., Gersh B.J., Hohnloser S.H. Atrial fibrillation in acute myocardial infarction: A systematic review of the incidence, clinical features and prognostic implications. Eur. Heart J. 2009;30:1038–1045. https://doi.org/10.1093/eurheartj/ehn579
61. Goldberg R.J., Yarzebski J., Lessard D., Wu J., Gore J.M. Recent trends in the incidence rates of and mortality rates from atrial fibrillation complicating initial acute myocardial infarction: A community-wide perspective. Am. Heart J. 2002;143:519–527. https://doi.org/10.1067/mhj.2002.120410
62. Carnicelli A.P., Owen R., Pocock S.J., Brieger D.B., Yasuda S., Nicolau J.C. Atrial fibrillation and clinical outcomes 1 to 3 years after myocardial infarction. Open Heart. 2021;8:e001726. https://doi.org/10.1136/openhrt-2021-001726
63. Jabre P., Jouven X., Adnet F., Thabut G., Bielinski S.J., Weston S.A., Roger V.L. Atrial Fibrillation and Death After Myocardial. Circulation. 2011;123:2094–2100. https://doi.org/10.1161/CIRCULATIONAHA.110.990192
64. Parashar S., Kella D., Reid K.J., Spertus J.A., Tang F., Langberg J., Vaccarino V., Kontos M.C., Lopes R.D., Lloyd M.S. New-Onset Atrial Fibrillation After Acute Myocardial Infarction and Its Relation to Admission Biomarkers (from the TRIUMPH Registry) Susmita. Am. J. Cardiol. 2013;112:1390–1395. https://doi.org/10.1016/j.amjcard.2013.07.006
65. Xu Y., Sharma D., Du F., Liu Y. The role of Toll-like receptor 2 and hypoxia-induced transcription factor-1α in the atrial structural remodeling of non-valvular atrial fibrillation. Int. J. Cardiol. 2013;168:2940–2941. https://doi.org/10.1016/j.ijcard.2013.03.174
66. Liang F., Wang Y. Coronary heart disease and atrial fibrillation: A vicious cycle. Am. J. Physiol. Heart Circ. Physiol. 2021;320:H1–H12. https://doi.org/10.1152/ajpheart.00702.2020
67. Zukela T., Zhou Q., Wang H., Zhou X., Li Y., Zhang Y. Relationship between new-onset atrial fibrillation and sympathetic neural remodeling in a canine acute myocardial infarction model. Zhonghua Xin Xue Guan Bing Za Zhi. 2015;43:975–981.
68. Landstrom A.P., Dobrev D., Wehrens X.H. Calcium Signaling and Cardiac Arrhythmias. Circ. Res. 2017;120:1969–1993. https://doi.org/10.1161/CIRCRESAHA.117.310083
69. Mas J. L., Derumeaux G., Guillon B., Massardier E., Hosseini H., Mechtouff L., Arquizan C., Béjot Y., Vuillier F., Detante O., et al. Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke. N. Engl. J. Med. 2017;377:1011–1021. https://doi.org/10.1056/NEJMoa1705915
70. Søndergaard L., Kasner S. E., Rhodes J. F., Andersen G., Iversen H. K., Nielsen-Kudsk J. E., Settergren M., Sjöstrand C., Roine R. O., HildickSmith D., et al. Patent foramen ovale closure or antiplatelet therapy for cryptogenic stroke. N.Engl. J. Med. 2017;377:1033–1042. https://doi.org/10.1056/NEJMoa1707404
71. Mojadidi M.K., Zaman M.O., Elgendy I.Y., Mahmoud A.N., Patel N.K., Agarwal N., Tobis J.M., Meier B. Cryptogenic Stroke and Patent Foramen Ovale. J. Am. Coll. Cardiol. 2018;71:1035–1043. https://doi.org/10.1016/j.jacc.2017.12.059
72. Guedeney P., Laredo M., Zeitouni M., Hauguel-Moreau M., Wallet T., Elegamandji B., Alamowitch S., Crozier S., Sabben C., Deltour S., et al. Supraventricular Arrhythmia Following Patent Foramen Ovale Percutaneous Closure. Cardiovasc. Interv. 2022;15:2315–2322. https://doi.org/10.1016/j.jcin.2022.07.044
73. Frendl G., Sodickson A.C., Chung M.K., Waldo A.L., Gersh B.J., Tisdale J.E., Calkins H., Aranki S., Kaneko T., Cassivi S., et al. AATS guidelines for the prevention and management of perioperative atrial fibrillation and flutter for thoracic surgical procedures. J. Thorac. Cardiovasc. Surg. 2014;148:e153–e193. https://doi.org/10.1016/j.jtcvs.2014.06.036
74. Philip I., Berroeta C., Leblanc I. Perioperative challenges of atrial fibrillation. Curr. Opin. Anesthesiol. 2014;27:344–352. https://doi.org/10.1097/ACO.0000000000000070
75. Lubitz S. A., Yin X., Rienstra M., Schnabel R. B., Walkey A. J., Magnani J. W., Rahman F., McManus D. D., Tadros T. M., Levy D., et al. Longterm outcomes of secondary atrial fibrillation in the community: The Framingham Heart Study. Circulation. 2015;131:1648–1655. https://doi.org/10.1161/CIRCULATIONAHA.114.014058
76. Villareal R.P., Hariharan R., Liu B.C., Kar B., Lee V.V., Elayda M., Lopez J.A., Rasekh A., Wilson J.M., Massumi A. Postoperative atrial fibrillation and mortality after coronary artery bypass surgery. J. Am. Coll. Cardiol. 2004;43:742–748. https://doi.org/10.1016/j.jacc.2003.11.023
Supplementary files
Review
For citations:
Abdullaev A.A., Kudaev M.T., Makhmudova E.R., Khabchabov R.G., Gafurova R.M., Islamova U.A., Anatova A.A., Dzhanbulatov M.A., Abdullaeva A.M. Experimental search for drugs for the treatment of atrial fibrillation (literature review). Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2025;15(3):31-41. (In Russ.) https://doi.org/10.20340/vmi-rvz.2025.3.PHYS.1