Preview

Вестник медицинского института «РЕАВИЗ». Реабилитация, Врач и Здоровье

Расширенный поиск

Дисфункция эпителиального барьера при бронхиальной астме

https://doi.org/10.20340/vmi-rvz.2022.4.MORPH.3

Аннотация

В основе патогенеза бронхиальной астмы лежит хроническое воспаление как ответ на этиологические факторы. Оно обуславливает бронхиальную гиперреактивность, ремоделирование дыхательных путей и гиперсекрецию слизи. Повреждение эпителия является патологическим признаком, наблюдаемым при всех фенотипах бронхиальной астмы. Цель данного обзора: провести анализ изменений в эпителиальном барьере при бронхиальной астме, отразить потенциальные терапевтические пути воздействия. Изменения в эпителиальном барьере включают в себя нарушение соотношения муцинов (MUC5AC к MUC5B), нарушения межклеточных соединений при воздействии аллергенов, инфекционных агентов, взвешенных частиц. В настоящее время разрабатываются различные диагностические подходы для обнаружения дисфункции эпителиального барьера. Воздействие на эпителиальный барьер дыхательных путей может стать многообещающей новой терапевтической стратегией при астме и связанных с ней аллергических заболеваниях. Сохранение или восстановление функции барьера дыхательных путей является новой областью респираторных заболеваний, требующей обширных дальнейших исследований.

Об авторах

Р. Н. Храмова
Приволжский исследовательский медицинский университет
Россия

Храмова Регина Ниязовна, аспирант кафедры госпитальной педиатрии

Нижний Новгород


Конфликт интересов:

Автор заявляет об отсутствии конфликта интересов.



Т. И. Елисеева
Приволжский исследовательский медицинский университет
Россия

Елисеева Татьяна Ивановна, доктор медицинских наук, доцент, профессор кафедры госпитальной педиатрии

Нижний Новгород


Конфликт интересов:

Автор заявляет об отсутствии конфликта интересов.



Т. Е. Потёмина
Приволжский исследовательский медицинский университет
Россия

Потёмина Татьяна Евгеньевна, доктор медицинских наук, профессор, заведующая кафедрой патологический физиологии

Нижний Новгород


Конфликт интересов:

Автор заявляет об отсутствии конфликта интересов.



Список литературы

1. GINA, “Global Initiative for Asthma – GINA 2021,” Ginasthma.org, 2021.

2. Innes Asher M., Garcia-Marcos L., Pearce N.E., Strachan D.P. Trends in worldwide asthma prevalence. Eur. Respir. J. 2020;56(6). https://doi.org/10.1183/13993003.02094-2020

3. Svenningsen S., Nair P. Asthma endotypes and an overview of targeted therapy for asthma. Frontiers in Medicine. 2017 SEP.;4. https://doi.org/10.3389/fmed.2017.00158

4. Fahy J.V. Type 2 inflammation in asthma - present in most, absent in many. Nature Reviews Immunology. 2015;15(1). https://doi.org/10.1038/nri3786

5. Papi A., Saetta M., Fabbri L. Severe asthma: Phenotyping to endotyping or vice versa? 2017;49(2). https://doi.org/10.1183/13993003.00053-2017.

6. Xiao C. et al. Defective epithelial barrier function in asthma. J. Allergy Clin. Immunol. 2011;128(3). https://doi.org/10.1016/j.jaci.2011.05.038

7. Ridley C., Thornton D.J. Mucins: The frontline defence of the lung. Biochemical Society Transactions. 2018;46(5). https://doi.org/10.1042/BST20170402

8. Steelant B. Epithelial dysfunction in chronic respiratory diseases, a shared endotype? Current opinion in pulmonary medicine. 2020;26(1). https://doi.org/10.1097/MCP.0000000000000638

9. Hammad H., Lambrecht B.N. Barrier Epithelial Cells and the Control of Type 2 Immunity. Immunity. 2015;43(1). https://doi.org/10.1016/j.immuni.2015.07.007

10. Davies D.E. Epithelial barrier function and immunity in asthma. Ann. Am. Thorac. Soc. 2014;11. https://doi.org/10.1513/AnnalsATS.201407-304AW

11. Radicioni G. et al. Airway mucin MUC5AC and MUC5B concentrations and the initiation and progression of chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort. Lancet Respir. Med. 2021;9(11). https://doi.org/10.1016/S2213-2600(21)00079-5

12. Bonser L.R., Erle D.J. Airway mucus and asthma: The role of MUC5AC and MUC5B. Journal of Clinical Medicine. 2017;6(12). https://doi.org/10.3390/jcm6120112

13. Hellings P.W., Steelant B. Epithelial barriers in allergy and asthma. Journal of Allergy and Clinical Immunology. 2020;145(6). https://doi.org/10.1016/j.jaci.2020.04.010

14. Shen L., Weber C.R., Raleigh D.R., Yu D., Turner J.R. Tight junction pore and leak pathways: A dynamic duo. Annu. Rev. Physiol. 2011;73. https://doi.org/10.1146/annurev-physiol-012110-142150

15. Hartsock A., Nelson W.J. Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochimica et Biophysica Acta – Biomembranes. 2008;1778(3). https://doi.org/10.1016/j.bbamem.2007.07.012

16. Ganesan S., Comstock A.T., Sajjan U.S. Barrier function of airway tract epithelium. Tissue Barriers. 2013;1(4). https://doi.org/10.4161/tisb.24997

17. Shahana S. et al. Ultrastructure of bronchial biopsies from patients with allergic and non-allergic asthma. Respir. Med. 2005;99(4). https://doi.org/10.1016/j.rmed.2004.08.013

18. Fang L., Sun Q., Roth M. Immunologic and non-immunologic mechanisms leading to airway remodeling in asthma. International Journal of Molecular Sciences. 2020;21(3). https://doi.org/10.3390/ijms21030757

19. Higashi T., Arnold T.R., Stephenson R.E., Dinshaw K.M., Miller A.L. Maintenance of the Epithelial Barrier and Remodeling of Cell-Cell Junctions during Cytokinesis. Curr. Biol. 2016;26(14). https://doi.org/10.1016/j.cub.2016.05.036

20. Sugita K. et al. Outside-in hypothesis revisited: The role of microbial, epithelial, and immune interactions. Annals of Allergy, Asthma and Immunology. 2020;125(5). https://doi.org/10.1016/j.anai.2020.05.016

21. Mitamura Y. et al. Dysregulation of the epithelial barrier by environmental and other exogenous factors. Contact Dermatitis. 2021;85(6). https://doi.org/10.1111/cod.13959

22. Heijink I.H. et al. Epithelial cell dysfunction, a major driver of asthma development. Allergy: European Journal of Allergy and Clinical Immunology. 2020;75(8). https://doi.org/10.1111/all.14421

23. Hackett T.L. et al. Intrinsic phenotypic differences of asthmatic epithelium and its inflammatory responses to respiratory syncytial virus and air pollution. Am. J. Respir. Cell Mol. Biol. 2011;45(5). https://doi.org/10.1165/rcmb.2011-0031OC

24. Carlier F.M., C. de Fays, Pilette C. Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Frontiers in Physiology. 2021;12. https://doi.org/10.3389/fphys.2021.691227

25. Kortekaas I. Krohn et al. Nasal epithelial barrier dysfunction increases sensitization and mast cell degranulation in the absence of allergic inflammation. Allergy Eur. J. Allergy Clin. Immunol. 2020;75(5). https://doi.org/10.1111/all.14132

26. Wan H. et al. The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus. Clin. Exp. Allergy. 2001;31(2). https://doi.org/10.1046/j.1365-2222.2001.00970.x

27. Petecchia L. et al. Bronchial airway epithelial cell damage following exposure to cigarette smoke includes disassembly of tight junction components mediated by the extracellular signal-regulated kinase 1/2 pathway. Chest. 2009;135(6). https://doi.org/10.1378/chest.08-1780

28. Short K.R. et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur. Respir. J. 2016;47(3). https://doi.org/10.1183/13993003.01282-2015

29. Saatian B. et al. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue Barriers. 2013;1(2). https://doi.org/10.4161/tisb.24333

30. Buckle F.G., Cohen A.B. Nasal mucosal hyperpermeability to macromolecules in atopic rhinitis and extrinsic asthma. J. Allergy Clin. Immunol. 1975;55(4). https://doi.org/10.1016/0091-6749(75)90139-6

31. Ilowite J.S., Bennett W.D., Sheetz M.S., Groth M.L., Nierman D.M. Permeability of the bronchial mucosa to 99mTc-DTPA in asthma. Am. Rev. Respir. Dis. 1989;139(5). https://doi.org/10.1164/ajrccm/139.5.1139

32. Lemarchand P., Chinet T., Collignon M.A., Urzua G., Barritault L., Huchon G.J. Bronchial clearance of DTPA is increased in acute asthma but not in chronic asthma. Am. Rev. Respir. Dis. 1992;145(1). https://doi.org/10.1164/ajrccm/145.1.147

33. Donno Del M., Chetta A., Foresi A., Gavaruzzi G., Ugolotti G., Olivieri D. Lung epithelial permeability and bronchial responsiveness in subjects with stable asthma. Chest. 1997;111(5). https://doi.org/10.1378/chest.111.5.1255

34. Taylor S.M., Downes H., Hirshman C.A., Peters J.E., Leon D. Pulmonary uptake of mannitol as an index of changes in lung epithelial permeability. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983;55(2). https://doi.org/10.1152/jappl.1983.55.2.614

35. Georas S. et al. The leaky lung test: a pilot study using inhaled mannitol to measure airway barrier function in asthma. J. Asthma. 2019;56(12). https://doi.org/10.1080/02770903.2018.1536145

36. Almuntashiri S., Zhu Y., Han Y., Wang X., Somanath P.R., Zhang D. Club cell secreted protein CC16: Potential applications in prognosis and therapy for pulmonary diseases. Journal of Clinical Medicine. 2020;9(12). https://doi.org/10.3390/jcm9124039

37. Sturgeon C., Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers. 2016;4(4). https://doi.org/10.1080/21688370.2016.1251384

38. Vieira Braga F.A. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 2019;25(7). https://doi.org/10.1038/s41591-019-0468-5

39. Plasschaert L.W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature. 2018;560(7718). https://doi.org/10.1038/s41586-018-0394-6

40. Steelant B., Seys S.F., Boeckxstaens G., Akdis C.A., Ceuppens J.L., Hellings P.W. Restoring airway epithelial barrier dysfunction: a new therapeutic challenge in allergic airway disease. Rhinol. J. 2017;54(3). https://doi.org/10.4193/rhin15.376

41. Wawrzyniak P. et al. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J. Allergy Clin. Immunol. 2017;139(1). https://doi.org/10.1016/j.jaci.2016.03.050

42. Fukuda K. et al. Epithelial-to-mesenchymal transition is a mechanism of ALK inhibitor resistance in lung cancer independent of ALK mutation status. Cancer Res. 2019;79(7). https://doi.org/10.1158/0008-5472.CAN-18-2052


Рецензия

Для цитирования:


Храмова Р.Н., Елисеева Т.И., Потёмина Т.Е. Дисфункция эпителиального барьера при бронхиальной астме. Вестник медицинского института «РЕАВИЗ». Реабилитация, Врач и Здоровье. 2022;(4):56-61. https://doi.org/10.20340/vmi-rvz.2022.4.MORPH.3

For citation:


Khramova R.N., Eliseeva T.I., Potemina T.E. Epithelial barrier dysfunction in bronchial asthma. Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2022;(4):56-61. (In Russ.) https://doi.org/10.20340/vmi-rvz.2022.4.MORPH.3

Просмотров: 294


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-762X (Print)
ISSN 2782-1579 (Online)