Митохондриальные изменения в канцерогенезе как цель противоопухолевой терапии (обзор)
Аннотация
Причины и механизмы развития рака в настоящее время являются одной из актуальных проблем медицины. Основным вариантом на сегодняшний день является мутационная теория. Выявление системы генных мутаций, в том числе и в митохондриях, приводящих к тому или иному виду опухолей, сделали возможным разработку персонализированной так называемой таргетной терапии злокачественных опухолей.
Об авторах
Т. Е. ПотеминаРоссия
Потемина Татьяна Евгеньевна - доктор медицинских наук, профессор, заведующий кафедрой патологической физиологии
Нижний Новгород
Э. В. Гузиков
Россия
Гузиков Эдуард Валерьевич - ассистент кафедры патологической физиологии; врач анестезиолог реаниматолог отделения реанимации и интенсивной терапии для новорожденных
Нижний Новгород
Список литературы
1. Porporato PE et al. Mitochondrial metabolism and cancer // Cell Res. – 2018. – № 28 (3). – P. 265–280.
2. Senft D., Ronai Z.A. Regulators of mitochondrial dynamics in cancer. Curr. Opin. // Cell Biol. – 2016. – Vol. 39. – P. 43–52.
3. Warburg O. On the origin of cancer cells / O. Warburg // Science. – 1956. – Vol. 123, № 3191. – P. 309–314.
4. Taganovich A.D. Patologicheskaya bioximiya. – M.: BINOM, 2013. – 448 s.
5. Isidoro A. et al. breast carcinomas funfill the Warburg hypothesis and providt metabolic markers of cancerprognosis // Cfncerogenesis. – 2005. – Vol. 26, № 12. – P. 2095–2104.
6. Guezva M. et al. The bioenergeticsignature of cancer: a marker of tumor pro-gression // Cancer. Res. – 2002. – Vol. 62, № 22. – P. 6674–6681.
7. Lopez-Rios F. Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas // Cancer Res. – 2007. – Vol. 67, № 19. – P. 9013–9017.
8. M. Wu Neilson A et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycoly-sis dependency in human tumor cells // Am. J. Physiol. Cell. Physiol. – 2007 – Vol. 292, № 1. – P. C125–136.
9. Schulz TJ et al. Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited // J. Biol. Chem. – 2006. – Vol. 281, № 2. – P. 977–981.
10. Gaude, E., Frezza С. Defects in mitochondrial metabolism and cancer // Can-cer. Metab. – 2014. – Vol. 2. – P. 10.
11. Morin A, Letouzé E, Gimenez-Roqueplo AP, Favier J. Oncometabolites-driven tu-morigenesis: From genetics to targeted therapy // Int. J. Cancer. – 2014. – Vol. 135, № 10. – P. 2237–2248.
12. Kiebish MA et al. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer // J. Lipid. Res. – 2008. – Vol. 49, № 12. –
13. P. 2545–2556.
14. Samudio I., Fiegl M, Andreeff M. Mitochondrial uncoupling and the Warburg ef-fect: molecular basis for the reprogramming of cancer cell metabolism // Can-cer Res. – 2009. – Vol. 69, № 6. – P. 2163–2166.
15. Ayyasamy V et al. Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin // PLoS One. – 2011. – Vol. 6 (9). – Р. e24792.
16. Ibsen K.H. The Crabtree effect: a review // Cancer Res. – 1961. – Vol. 21. – P. 829–841.
17. Eakin RT et al. Carbon-13 nuclear magnetic resonance spectroscopy of living cells and their metabolism of a specifically labeled 13C substrate // FEBS Lett. – 1972. – Vol. 28(3). – Р. 259–264.
18. Weinhouse S., Krebsforsch Z. The Warburg hypothesis fifty years later // Klin. Onkol. Cancer Res. Clin. Oncol. – 1976. – Vol. 87, № 2. – Р. 115–126.
19. Pedersen P.L. Tumor mitochondria and the bioenergetics of cancer cells // Prog. Exp. Tumor Res. – 1978. – Vol. 22. – P. 190–274.
20. Mishra P., Chan D.C. Metabolic regulation of mitochondrial dynamics // J. Cell Biol. – 2016. – № 12. –
21. P. 379–387.
22. Wallace DC. Mitochondria and cancer: Warburg addressed // Cold Spring Harb Symp Quant Biol. – 2005. –Vol. 70. – P. 363–374.
23. Ishikawa K et al. ROS-generating mitochondrial DNA mutations can regulate tu-mor cell metastasis // Science. – 2008. – Vol. 320 (5876). – P. 661–664.
24. Wang Y, Xia Y, Lu Z. Metabolic features of cancer cells // Cancer Commun. – 2018. – Vol. 38 (1). – Р. 65. –URL:http://www.cancercommun.biomedcentral.com/articles/10.1186/s40880-018-0335-7
25. Roth KG, Mambetsariev I, Kulkarni P, Salgia R. The mitochondrion as an emerg-ing therapeutic target in cancer // Trends Mol Med. – 2019. – № 26 (1). – Р.119–134.
26. Khutornenko AA et al. Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway // Proc Natl Acad Sci USA. – 2010. – № 107 (29). – P. 12828–33.
27. Dong L.F. et al. Horizontal transfer of whole mitochondria restores tumor-igenic potential in mitochondrial DNA-deficient cancer cells // Cancer Com-mun. – 2019. – Р. 39–63. – URL: http://www.cancercommun.
28. biomedcentral.com/track/pdf/10.1186/s40880-019-0412-6
29. Tan A.S. et al. Mitochondrial genome acquisition restores respiratory func-tion and tumorogenic potential of cancer cells without mitochondrial DNA // Cell Metab. – 2015. – № 21 (1). – P. 81–94.
30. Hu Y.L. et al. Hypoxia-induced autophagy promotes tumor cell survival and ad-aptation to antiangiogenic treatment in glioblastoma // Cancer Res. – 2012. – Vol. 72. – P. 1773–1783.
31. Kulikov V.A., Belyaeva L.E. Metabolicheskoe pereprogrammirovanie rakovy`x kletok // Vestnik Vi-tebskogo gosudarstvennogo medicinskogo universiteta. – 2013. – № 2. – Tom 12. – C. 6–12.
32. Dang C.V., Kim J.W., Gao P., Yustein J. The interplay between MYC and HIF in cancer // Nat. Rev. Cancer. – 2008. – Vol. 8. – Р. 51–56.
33. Kulikov V.A. Signal'nye kaskady, onkogeny, geny-onkosupressory i metabolizm rakovoj kletki // Vestn. VGMU. – 2014. – T. 13, № 5. – S. 6-15.
34. Kumykova Z.Yu. Rol' gena r53 i kodiruemogo im belka v kancerogeneze cheloveka i zhivotnyh // Vestnik magistratury. - 2014.- № 5-1 (32). - S. 18–20.
35. Bell E.L., Emerlin, B.M., Ricoul S.J., Guarente L. SirT3 suppresses hypoxia inducible factor 1a and tumor growth by inhibiting mitochondrial ROS produc-tion. // Oncogene. – 2011. – Vol. 30. – Р. 2986–2996.
36. Chen W. et al. Tumor protein translationally controlled 1 is a p53 target gene that promotes cell survival // Cell Cycle. – 2013. – Vol. 12. – № 14. – P. 617–633.
37. Martinou J.C., Youle R.J. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics // Dev. Cell. – 2011. – № 21. – P. 92–101.
38. Tan Z. et al. The Role of PGC1a in Cancer Metabolism and its Therapeutic Im-plications // Mol. Cancer Ther. – 2016. – Vol. 15. – P. 774–782.
39. La Gory E.L. et al. Suppression of PGC-1a Is Critical for Reprogramming Oxi-dative Metabolism in Renal Cell Carcinoma // Cell Rep. – 2015. – № 12. – P. 116–127.
40. Lamb R. et al. Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 in-hibition // Oncotarget. – 2014. – Vol. 5. – P. 11029–11037.
41. De Luca, A. et al. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells // Oncotarget. – 2015. – Vol. 6. – P. 14777–14795.
42. Le Bleu V.S. et al. Pgc-1alpha Mediates Mitochondrial Biogenesis and Oxida-tive Phosphorylation in Cancer Cells to Promote Metastasis // Nat. Cell. Bi-ol. – 2016. – Vol. 16. – P. 992–1003, 1001–1015.
43. Lee J.V. et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation // Cell Metab. – 2014. – Vol. 20. – P. 306–319.
44. Morita M. et al. mTOR coordinates protein synthesis, mitochondrial activity and proliferation // Cell Cycle. – 2015. – Vol. 14. – P. 473–480.
45. Sancho P. et al. MYC/PGC-1a Balance Determines the Metabolic Phenotype and Plasticity of Pancreatic Cancer Stem Cells // Cell Metab. – 2015. – Vol. 22. – P. 590–605.
46. Guo J.Y. et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis // Genes Dev. – 2013. – Vol. 27. – P. 1461–1463.
47. Hu Y.L. et al. Hypoxia-induced autophagy promotes tumor cell survival and ad-aptation to antiangiogenic treatment in glioblastoma // Cancer Res. – 2012. – Vol. 72. – P. 1773–1783.
48. Mancias J.D., Kimmelman A.C. Mechanisms of Selective Autophagy in Normal Physiology and Cancer //
49. J. Mol. Biol. – 2016. – Vol. 428. – P. 1659–1680.
50. Chourasia A.H., Boland M.L., Macleod K.F. Mitophagy and cancer // Cancer Metab. – 2014. – № 6. –
51. P. 329–339.
52. Ortega A.D. et al. Glucose avidity of carcinomas // Cancer Lett. – 2009. – Vol. 276. – № 2. – P. 125–135.
53. Ju Y.S. et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. // eLife. – 2014. – № 3. – P. 2-28.
54. Porporato P.E. et al. A mitochondrial switch promotes tumor metastasis // Cell Rep. – 2014. – Vol. 8. –
55. P. 754–766.
56. Cui Q, Wen S, Huang P. Targeting cancer cell mitochondria as a therapeutic approach: recent updates // Future Med Chem. – 2017. – Vol 9 (9). – P. 929–949.
57. Kalyanaraman B et al. A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: therapeutic tar-geting of tumor mitochondria with lipophilic cationic compounds // Redox Bi-ol. – 2018. – Vol. 14. – P. 316–327.
58. Ghosh J.C. et al. Adaptive mitochondrial reprogramming and resistance to PI3K therapy // J. Natl. Cancer Inst. – 2015. – Vol. 107 (3).
59. Du X, Zhang P, Fu H, Ahsan HM, Gao J, Chen Q. Smart mitochondrial-targeted cancer therapy: subcellular distribution, selective TrxR2 inhibition accompa-ny with declined antioxidant capacity // Int J Pharm. – 2019. –Vol. 555. – Р. 346–355.
60. Lei Y et al. Metformin targets multiple signaling pathways in cancer // Chin J Cancer. – 2017. – Vol. 6 (1). – Р. 17.
61. The 150 most important questions in cancer research and clinical oncology se-ries: questions 94–101: edited by Cancer Communications // Cancer Commun. – 2018. – Vol. 38 (1). – Р. 69.
62. Cheng G et al. Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death // Cancer Res. – 2012. – Vol. 72 (10). – Р. 2634–2644.
63. Vyas, S., and Chang, P. New PARP targets for cancer therapy // Nat. Rev. Can-cer. – 2014. – Vol. 14. –
64. P. 502–509.
65. Dong L. Neuzil J Тargeting mitochondria as an anticancer strategy // Cancer Communications. – 2019. – Vol. 39. – Р. 63.
Для цитирования:
Потемина Т.Е., Гузиков Э.В. Митохондриальные изменения в канцерогенезе как цель противоопухолевой терапии (обзор). Вестник медицинского института «РЕАВИЗ». Реабилитация, Врач и Здоровье. 2020;(4):65-73. https://doi.org/10.20340/vmi-rvz.2020.4.8
For citation:
Potemina T.E., Guzikov E.V. Mitochondrial changes in carcinogenesis as a goal of antitumor therapy (review). Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2020;(4):65-73. (In Russ.) https://doi.org/10.20340/vmi-rvz.2020.4.8