Preview

Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH)

Advanced search

Dualism of the Aging Process (analytical review)

https://doi.org/10.20340/vmi-rvz.2025.3.EDT.1

Abstract

The aging process is one of the most complex problems in biology. Hundreds of research institutes around the world are studying aging at various levels of the structural organization of living matter. The results of many thousands of studies on this phenomenon have been published. More than 300 theories have been proposed that attempt to explain the causes of aging. It is important to note that almost all theories associate aging with the accumulation of negative changes in molecules and cells in the body. It seems that a person (or an individual of another biological species) lives in order to make negative changes in the structure of living matter. However, this contradicts the fact that damage and destructive changes cannot ensure progress in the evolutionary development of life. The article attempts to find the cause of this contradiction. The author puts forward a position on the dual function of the aging process in the development of living matter: on the one hand, aging causes degradation of the organism as a system, on the other, it ensures the structural improvement of its tissues at the molecular level. That is, aging, as the main mechanism of evolution, is aimed not at preserving the organism as a system, but at preserving its individual elements (information blocks) that are of interest for building new structures of living matter as a whole. An evolutionary ladder is formed from these information blocks, along which living matter rises to a higher level of its development. Aging is not decay or damage, but a mechanism for transferring one structure of living tissue to another - more perfect, with its preservation in the form of a potential phase for use by new cellular generations of the same organism or other organisms.

About the Author

V. N. Shabalin
Medical University "Reaviz"; Research Institute of General Pathology and Pathophysiology
Russian Federation

Vladimir N. Shabalin - Dr. Sci. (Med.), Professor, Academician of the Russian Academy of Sciences, president; Chief Researcher 

227, Chapayepvskaya St., Samara, 443001;
8, Baltiyskaya St., Moscow 125315



References

1. Litvinova N. A. Ecosystem approach to reproduction of human capital. Creative economy. 2023;17(5):1655-1670. (In Russ.)

2. Bobrinsky B. The Mystery of the Holy Trinity: [course of dogmatic theology]. Orthodox St. Tikhon's University for the Humanities. Moscow: PSTGU Publishing House. 2005:360. (In Russ.)

3. Camazine S., Deneubourg J-L., Nigel R. et al. Self-Organization in Biological Systems. Princeton university press. 2020:562.

4. Isaeva V.V. Self-Organization in Biological Systems. Izvestiya Akademii Nauk, Seriya Biologicheskaya. 2012;2:144–153.

5. Prigogin I., Nicolis J. Biological order, structure and instabilities. Advances in physical sciences. 1973;109(3):517-544. (In Russ.)

6. Nicolis G., Prigogine I. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations. Wiley, New York. 1977.

7. Korosov, A.V. The principle of emergence in ecology. Principles of ecology. 2012;3:48-66. (In Russ.)

8. Tsvetkov, V.Ya., Kozlov, A.V. Using Models of Living Organisms to Analyze the Evolution of Complex Organizational and Technical Systems. Educational Resources and Technologies. 2019;4(29):68-76. (In Russ.)

9. Shabalin, V.N., Shatokhina, S. N. The Role of Aging in Human Evolutionary Development. Bulletin of the Russian Academy of Sciences. 2020; 90(12):1119–1127. (In Russ.)

10. Мoiseev N.N. Universe. Information. Society Sustainable World. 2001:198. (In Russ.)

11. Anisimov V.N. Molecular and Physiological Mechanisms of Aging. St. Petersburg. 2008:467. (In Russ.)

12. Picca A, Guerra F, Calvani R. et al. Mitochondrial Dysfunction and Aging: Insights from the Analysis of Extracellular. Vesicles.Int. J. Mol. Sci. 2019;20(4):805.

13. Kowald А, Kirkwood T.B. Can aging be programmed? A critical literature reviewAging. Cell. 2016.15(6):986-998.

14. Kunizheva, S.S., Volobaev, V.P., Plotnikova M.Yu. et al. Current trends and approaches to the search for genetic determinants of aging and longevity. Genetics. 2022;58(12):1367-1385. (In Russ.)

15. Mikheev, R.K., Andreeva, E.N., Grigoryan, O.R. et al. Molecular and cellular mechanisms of aging: current concepts (literature review). Problems of Endocrinology. 2023;69:(5):45-54.

16. Sergiev P.V., Dontsova O.A., Berezkin G.V. Theories of Aging: An Ever-Evolving Field. Acta Naturae. 2015;7(1):9-18.

17. Zhang W., Qu J., Liu G.-H., Belmonte J.C.I. Epigenome aging and rejuvenation. Nature Reviews Molecular Cell Biology. 2020;21(3):137-150.

18. Haber C. Life extension and history: the continual search for the fountain of youth. J Gerontol A Biol Sci Med Sci. 2004. 59(6):B515-B522.

19. Lars Kiemer, Gianni Cesareni. Comparative interactomics: comparing apples and pears? Trends in Biotechnology. 2007;25(10):448–454.

20. Bruggeman F.J., Westerhoff H.V. The nature of systems biology. Trends in Microbiology. 2007;15(1):45–50.

21. Ivanov, A.S., Zgoda, V.G., Archakov A.I. Protein interactomics technologies. Bioorganic Chemistry. 2011;37(1):8-21. (In Russ.)

22. Panova, E.I. Categories of Health and Disease in the Evolution of Medical Paradigms. Sociology of Medicine. 2019;18 (2):110–117. (In Russ.)

23. Tyulenev V.M. Lactantius: Christian historian at the crossroads of eras. Scientific pub. St. Petersburg: Aletheia. 2000:319. (In Russ.)

24. Sephiashvili D. P. The Role of Disease in Organic Progress. Open Biological Sciences Jornal. 2015;1(1):1-6.

25. Solodukhina, D.P. Historical Analysis of the Concepts of Health and Disease. The World of Science. Sociology, Philology, Cultural Studies. 2021;1:121.

26. Artemenkov A.A. Maladaptation as a factor in evolutionary development in human populations. Scientific review. Abstract journal. 2017;1:5-16. (In Russ.)

27. Supotnitsky M.V. Dictionary of genetic terms. Moscow: UNIVERSITY BOOK. 2007:508. (In Russ.)

28. Belan D.V., & Ekimova, I.V. Heat shock proteins in conformational diseases of the brain. Russian Physiological Journal named after I. M. Sechenov 2019;105(12):1465-1485. (In Russ.)

29. Pribram K. Languages of the Brain: Experimental Paradoxes and Principles of Neuropsychology. Translated from English. 2nd ed. M.: Book House "LIBROKOM". 2010:464. (In Russ.)

30. Андрианов А.М. Конформационный анализ белков: теория и приложения. Минск: Беларус. Навука, 2013. 518 с. Pardaeva S., Zhumaeva F., Akhmedov A. Function of cell proteins. Oriental renaissance: Innovative, educational, natural and social sciences. 2021;1(10):369-379. (In Russ.)

31. Pardaeva S., Zhumaeva F., Akhmedov A. Функция белков клетки. Oriental renaissance: Innovative, educational, natural and social sciences. 2021;1(10):369-379.

32. Porter L.L., Looger L.L. "Extant fold-switching proteins are widespread". Proceedings of the National Academy of Sciences. 2018;115(23):5968-5973.

33. Sakharov V.N., Litvitsky P.F. Instability of protein conformation is a common component of the pathogenesis of human diseases. Bulletin of the Russian Academy of Medical Sciences. 2016;71(1):46-51. (In Russ.)

34. Vacek J., Zatloukalová M., Dorčák V. at al. Electrochemistry in sensing of molecular interactions of proteins and their behavior in an electric feld. Microchimica Acta. 2023;190:2-21.

35. Hu X., Feng C., Ling T., Chen M. Deep learning frameworks for protein-protein interaction prediction. Comput Struct Biotechnol J. 2022;20:3223-3233.

36. Bahar I., Jernigan R.L., Dill K.A. Protein Actions: Principles and Modeling. Journal of Biological Physics. 2017;43(4):1-5.

37. Thabault L, Liberelle M, Frédérick R. Targeting protein self-association in drug design. Drug Discov. Today. 2021;26(5):1148-63.

38. Hribar-Lee B., Lukšic M. Biophysical Principles Emerging from Experiments on Protein–Protein Association and Aggregation. Annu. Rev. Biophys. 2024. 53:1–18.

39. Cohen R.D., Pielak G. J. Electrostatic Contributions to Quaternary Protein Structure. Journal of the American Chemical Society. 2016;138(40):13139-13142.

40. Danielsson J., Oliver M. "Comparing in vitro and in vivo protein behavior: what do these data really tell us?" Current Opinion in Structural Biology. 2017;42:129–135.

41. Shekhtman A., Burtz D.S., DeMott Ch., Breindel L. Real-time nuclear magnetic resonance in cells: ribosome-targeting antibiotics modulate protein interactions. Biochemistry. 2018;57(5):540-546.

42. Kakadzhanova K.K., Yusubov D., Matiev D. The basis of biological life or about the structural organization and function of proteins. Science Bulletin. 2024;4(73):562-565. (In Russ.)

43. Csaba P., Balázs P., Csaba P. An integrated view of protein evolution. Nature Reviews Genetics. 2006;7:337-348.

44. Uhlén M., Karlsson M., Andreas H. et al. The human secretome. Sci Signal. 2019;2(609).

45. Omenn G.S., Orchard S., Lane L. at all. The 2024 Report on the Human Proteome from the HUPO Human Proteome Project. J Proteome Res. 2024;6:23(12):5296-5311.

46. Karki R., Pandya D., Elston R.C. et al. Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Med Genomics. 2015; 8:37.

47. Inge-Vechtomov S.G. The problem of variability. Phenomenology and mechanisms. Vavilov Journal of Genetics and Breeding. 2013;17 (4/2):791-804. (In Russ.)

48. Shendure J., Akey J.M. The origins, determinants, and consequences of human mutations. Science. 2015;349(6255):1478-83.

49. Uspenskaya N.Ya., Akopov S.B., Snezhkov E.V., & Sverdlo E.D. The rate of human germline mutations is a variable factor of evolution and diseases. Genetics. 2019;55(5):493-505. (In Russ.)

50. Churaev R.N. Epigenes – hereditary units of the supragenic level. Ecological Genetics 2010; 4:17-24. (In Russ.)

51. Kurtzman J., Gordon P. No More Daing. The Conquest of Agind and the Extension of Human Life. Los Angeles. 1976. 218 p.

52. Finkelshtein A.V. 50+ years of protein self-organization. Advances in Biological Chemistry. 2018;58:7-40. Finkelshtein A.V. 50+ years of protein self-organization. Advances in Biological Chemistry. 2018;58:7-40. (In Russ.)

53. Kolyubaeva S.N., Sveklinа T.S., Shustov S.B. et al. Mitochondrial genome and aging of cardiomyocytes. Genes and Cells. 2021;16(4):14-21. (In Russ.)

54. Hidalgo R.A., Veltman J.A., Hoischen A. et al. New insights into the generation and role of de novo mutations in health and disease. Genome Biology. 2016;17:241.

55. Cagan A., Baez-Ortega A., Brzozowska N., et al. Somatic mutation rates scale with lifespan across mammals. Nature. 2022;604:517-524.

56. Shreeya T., Ansari M.S., Kumar P., et al. Senescence: A DNA damage response and its role in aging and Neurodegenerative Diseases. Front Aging. 2024;4:129.

57. Epelbaum J. Neuroendocrinology and aging. J Neuroendocrinol. 2008;20(6):808-811.

58. Melikhova L.V., Chentieva L.A., & Lushchik M.V. Main theories of aging. International Student Scientific Bulletin. 2016;4-2. (In Russ.)

59. da Costa JP, Vitorino R, Silva GM, et al. A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res Rev. 2016;29:90-112.

60. Schumacher B, Pothof J, Vijg J, Hoeijmakers J.H.J. The central role of DNA damage in the ageing process. Nature. 2021;592(7856):695-703.

61. Dabin J., Fortuny A., Polo S.E. Epigenome maintenance in response to DNA damage. Mol. Cell. 2016;62:712-727.

62. Bennett-Baker P.E., Wilkowski J., Burke D.T. Age-associated activation of epigenetically repressed genes in the mouse. Genetics. 2003;165(4):2055-2062.

63. Pervushin V.V., Gorpinich I.V., Savonchik G.S. Mutagenesis: varieties and evolutionary role. International Student Scientific Bulletin. 2022;1. (In Russ.)

64. Chen X, Fu W, Luo Y, et al. Protein deamidation to produce processable ingredients and engineered colloids for emerging food applications. Compr Rev Food Sci Food Saf. 2021;20(4):3788-3817.

65. Galzio R, Rosati F, Benedetti E, et al. Glycosilated nucleolin as marker for human gliomas. J Cell Biochem. 2012;113(2):571-579.

66. Mikheev R.K., Andreeva E.N., Grigoryan O.R. et al. Molecular and cellular mechanisms of aging: current concepts (literature review). Problems of Endocrinology 2023;69(5):45-54. (In Russ.)

67. Orgel L. E., Molecular evolution, Origin of Life . New York, Wiley. 1973:237.

68. Bahar R., Hartmann C.H., Rodriguez K.A., et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature. 2006;441:1011–1014.

69. López-Gil L, Pascual-Ahuir A, Proft M. Genomic Instability and Epigenetic Changes during Aging. Int J Mol Sci. 2023;24(18):14279.

70. Vijg J. From DNA damage to mutations: All roads lead to aging. Ageing Res. Rev. 2021;68:101316.

71. Schumacher B., Pothof J., Vijg J., Hoeijmaker, J.H.J. The central role of DNA damage in the ageing process. Nature. 2021;592: 695-703.

72. Hashizume O., Ohnishi S., Mito T. Epigenetic regulation of the nuclearcoded GCAT and SHMT2 genes confers human age&associated mito& chondrial respiration defects, Sci. Rep. 2015;5:10434.

73. Rodriguez-Roder S. Fernández-Morera J.L., Fernández A.F. et all. Epigenetic regulation of aging: implications for interventions of aging and diseases. Discov Med. 2010; 10(52):225-33.

74. Montano S.P., Pigli Y.Z., Rice P.A. The Mu transpososome structure sheds light on DDE recombinase evolution. Nature. 2012;491:413-417.

75. Anashkina A.A., Kuznetsov E.N., Batyanovsky A.V. et al. Protein-DNA interactions: statistical analysis of interatomic contacts in the major and minor grooves. Vavilov Journal of Genetics and Breeding. 2017;21(8):887-894.

76. Titeca K, Lemmens I, Tavernier J, Eyckerman S. Discovering cellular protein‐protein interactions: Technological strategies and opportunities. Mass Spectrom Rev. 2019; 38(1):79-111.

77. Wapshott A. Protein-Protein Interactions: Biological Regulation of Enzyme Function. Enz Eng. 2023;12:220.

78. Inge-Vechtomov S.G. Mechanisms of modification variability. Ecological Genetics. 2010;8(4):4-9. (In Russ.)

79. Astratenkova I.V., Akhmetov I.I., Golberg N.D., Rogozkin V.A. Regulation of skeletal muscle metabolism by epigenetic factors. I.M. Sechenov Russian Physiological Journal 2019;105(9):1113–1121. (In Russ.)

80. Wang K., Liu H., Hu Q. et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther. 2022;7:7:374.

81. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.

82. West J., Widschwendter M., Teschendorff A. E. Distinctive topology of age-associated epigenetic drift in the human interactome. PNAS. 2013;110(35):14138-14143.

83. Markov A.V., Serebryakova V.V., Nazarenko M.S. et al. Assessment of the global DNA methylation level by LINE-1 retrotransposon methylation in human atherosclerosis. Medical Genetics. 2018;17 (3):13-17. (In Russ.)

84. Johnson A.A., Akman K., Calimport S. et all. The role of DNA methylation in aging, rejuvenation and age-related diseases. Rejuvenating effect. 2012;15(5):483-94.

85. Jones M.J., Goodman S.J., Kobor M.S. DNA Methylation and Healthy Human Aging. Senescent Cell. 2015;14(6):924-932.

86. Yi S.Z., Kim K. New insights into the role of histone changes in aging. Int . J Mol Sci. 2020;3:21(21):8241.

87. Sedivy J.M., Banumathy G., Adams P.D. Aging by epigenetics - a consequence of chromatin damage? Exp Cell Res. 2008;12:314(9):1909-1917.

88. Purohit J.S., Chaturvedi M.M.. Chromatin and Aging. Topics in Biomedical Gerontology. 2016;18:205-241.

89. Muravleva L.V., Molotov-Luchansky V.B., Klyuev D.A. et al. Extracellular nucleic acids: origin and functions. Modern problems of science and education. 2010;2:15-20. (In Russ.)

90. Pisetsky D., Fairhurst A. The origin of extracellular DNA during the clearance of dead and dying cells. Autoimmunity. 2007. 40(4): 281-284.

91. Kozlov V.A. Free extracellular DNA in norm and pathology. Medical Immunology. 2013;15(5):399-412. (In Russ.)

92. Smith, T., Ho, G., Christodoulou, J. at al. Extensive variation in the mutation rate between and within human genes associated with Mendelian disease. Human Mutation, 2016; 37(5):488-494.

93. Artemenkov A.A. Maladaptive genetic and evolutionary processes in human populations of industrial cities. Russian Medical and Biological Bulletin named after Academician I.P. Pavlov. 2020;28(2):234-248. (In Russ.)

94. Moor N.A., Lavrik O.I. Protein-protein interactions in DNA base excision repair. Biochemistry. 2018;83:4:411-422.

95. Endutkin A.V., Yudkina A.V., Sidorenko V.S., Zharkov D.O.. Transient proteinprotein complexes in base excision repair. Journal of Biomolecular Structure & Dynamics. 2019;37:17:4407-4418.

96. Sun J., Antczak N.M., Gahlon H.L., Sturla S.J. Molecular beacons with oxidized bases report on substrate specificity of DNA oxoguanine glycosylases. Chemical Science. 2022;13:15:4295-4302.

97. Faller V.M., & Shields D. Molecular Biology of the Cell. Binom-Press. 2006. 235 р. (In Russ.)

98. Malygina N.A. Cell aging and age-related diseases. Clinical Gerontology. 2014;3-4:30-34. (In Russ.)

99. Edifizi D., Nolte H., Babu V. et al. Multilayered reprogramming in response to persistent DNA damage in C. elegans. Cell Rep. 2017;20:2026-2043.

100. Garagnani P., Marquis J., Delledonne К. et al. Whole-genome sequencing analysis of semi-supercentenarians. eLife. 2021;10:e57849.

101. Bin-Jumah M.N., Nadeem M.S., Gilani S.J., et al. Genes and longevity of lifespan. Int J Mol Sci. 2022;23(3):1499.

102. Takubo K., Nakamura K., Izumiyama N. at all. Telomere Shortening With Aging in Human Liver. Journal of Gerontology: BIOLOGICAL SCIENCES. 2000;55A(11):533-536.

103. Aguado J., d’Adda di Fagagna F., Wolvetang E. Telomere transcription in ageing. Ageing Res Rev. 2020;(62):101115.

104. Masyutina A.M., Pashchenkov M.V., Pinegin B.V. Cellular aging: mechanisms and clinical significance. Immunology. 2024;45 (2):221-234.

105. Fedintsev A.,Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules – A missing hallmark of aging. Ageing Research Reviews. 2020;62:101097.

106. Selman M, Pardo A.Selman M, et al. Fibroageing: An ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Res Rev. 2021;70:101393.

107. Harman D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 1956;11:298-300.

108. Barja G. Rate of generation of oxidative stress-related damage and animal longevity. Free Radic. Biol. Med. 2002;33:1167-1172.

109. Carusillo A, Mussolino C. DNA damage: From threat to treatment. Cells. 2020;9(7):1665.

110. Shi T, Dansen T.B. Reactive Oxygen Species induced p53 activation: DNA damage, redox signaling, or both? Antioxid Redox Signal. 2020;33(12):839-859.

111. Andziak B., O’Connor T.P., Qi W., at al. High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell. 2006;5:463-471.

112. Labunskyy V.M., Gladyshev V.N. Role of Reactive Oxygen Species-Mediated Signaling in Aging. Antioxid. Redox Signal. 2013;19:1362-1372.

113. Viña J., Borras C., Abdelaziz Kh. M, Garcia-Valles R. The free radical theory of aging revisited: the cell signaling disruption theory of aging. Antioxid Redox Signal. 2013.19(8):779-87.

114. Sparks J.L., Chistol G., Gao A.O. at al. The CMG helicase bypasses DNA-protein cross-links to facilitate their repair. Cell. 2019;176:1-2:167-181.

115. Nakamura J., Nakamura M. DNA-protein crosslink formation by endogenous aldehydes and AP sites. DNA repair. 2020;88:102806.

116. Zhou Y, Myung Y, Rodrigues C. et al. DDMut-PPI: predicting effects of mutations on protein-protein interactions using graph-based deep learning. Nucleic Acids Res. 2024;5:52(W1):W207-W214.

117. Bjorksten J. Longevity, a Quest: An Odissey. 1981:269.

118. Kats Ya.A., Parkhonyuk E.V. Sclerosis: local and general patterns of development. Clinical Medicine. 2015;8:29-38. (In Russ.)

119. Spasov A.A., Rashchenko A.I. Therapeutic potential of glycated protein cross-link breakers. Bulletin of Volgograd State Medical University. 2016;1(57):12-16.

120. Franceschi C., Bonafe M., Valensin S. at al. Inflammaging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000;908: 208-218.

121. Jurk D., Wilson C., Passos J.F. et al. Chronic infl ammation induces telomere dysfunction and accelerates aging in mice. Nat. Commun. 2014;2:4172.

122. Coder B., Wang H., Ruan L., Su D. M. Thymic involution pertubs negative selection leading to autoreactive T cells that induce chronic inflammation. J. Immunol. 2015;194:12: 5825-5837.

123. Zinoviev P.A., Shubina I.Zh., Yamenskov V.V., Kiselevsky M.V. Chronic inflammation in the elderly: mechanisms of development and relationship with atherosclerosis. Russian biotherapeutic journal. 2021;20(2):10-8. (In Russ.)

124. Cisneros B, García-Aguirre I, Unzueta J, at al. Immune system modulation in aging: Molecular mechanisms and therapeutic targets. Front. Immunol. 2022;13:1059173.

125. Santoro A, Bientinesi E, Monti D. Immunosenescence and inflammation in aging: age-related diseases or longevity? Ageing Res Rev. 2021;71:101422.

126. Pawelec G. Age and immunity: What is "immunosenescence"? Exp Gerontol. 2018;105:4-9.

127. Teissier T, Boulanger E, Cox LS. Interconnections between inflammageing and immunosenescence during ageing. Cells. 2022;11(3):1-48.

128. Rea I.M., Gibson D.S., McGilligan V., at al. Age and age-related diseases: Role of inflammation triggers and cytokines. Front Immunol. 2018;9:586.

129. Ferrucci L., Fabbri E.. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15(9):505-522.

130. Selman M., Pardo A., Selman M. et al. Fibroageing: An ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Res Rev. 2021;70:101393.

131. Fulop T., Larbi A., Pawelec G. et al. Immunology of aging: the birth of inflammaging. Clin Rev Allergy Immunol. 2023;64(2):109-122.

132. Arai Y., Martin-Ruiz C.M., Takayama M., et al. Inflammation, but not telomere length, predicts successful ageing at extreme old age: A longitudinal study of semi-supercentenarians. EBioMedicine. 2015;2(10):1549-58.

133. Zhou L., Ge M., Zhang Y. et al. Centenarians alleviate inflammaging by changing the ratio and secretory phenotypes of T helper 17 and regulatory T cells. Front Pharmacol. 2022:13:877709.

134. Andersen-Ranberg K., Hoier-Madsen M., Wiik A. еt al. High prevalence of autoantibodies among Danish centenarians. Clin Exp Immunol. 2004;138:158-163.

135. Vadasz Z., Haj T., Kessel A. et al. Age-related autoimmunity. BMC Med. 2013;11:94.

136. Moskalets O.V. Features of immunoreactivity in the elderly and a(in russian).utoimmunity. Advances in Gerontology. 2020;33(2):246-255. (In Russ.)

137. Bayersdorf R., Fruscalzo A., Catania F. Linking autoimmunity to the origin of the adaptive immune system. Evolut. Med. Publ. Hlth. 2018;1:2–12.

138. Ellis J.C., Braley-Mullen H. Mechanisms by which B cells and regulatory T cells infl uence development of murine organspecifi c autoimmune disease. J. clin. Med. 2017; 6(2):E13.

139. Zotkin E.G., Dydykin, I.S., Lila A.M. Inflammatory theory of aging, age-associated diseases, and osteoarthritis. Russian Medical Journal. 2020;7:33-38. (In Russ.)

140. Perluigi M., Swomley A.M., Butterfield D.A. Redox proteomics and the dynamic molecular landscape of the aging brain. Ageing Res Rev. 2014;13;75-89.

141. Gumovsky A.N., Zavyalova Ya.S., Karp T.D., et al. The concept of lipofuscinosis of brain neurons in chronic cerebral ischemia. International Student Scientific Bulletin. 2015;2(20):200-201. (In Russ.)

142. Gribanov A.V., Jos Yu.S., Deryabina I.N. et al. Human brain aging: morphofunctional aspects. S.S. Korsakov. Journal of Neurology and Psychiatry. Special issues. 2017;117(12):3-7. (In Russ.)

143. Alfaro I.E., Albornoz A., Molina A. at al. Chaperone Mediated Autophagy in the Crosstalk of Neurodegenerative Diseases and Metabolic Disorders. Front Endocrinol (Lausanne). 2019;31(9):778.

144. Faskhutdinova E.R., Milentyeva I.S., Loseva A.I. et al. Effect of Ginkgo biloba extract and its biologically active substances on lipofuscin accumulation in the body of Caenorhabditis elegans. Technologies of living systems.2023;2(4):121-130. (In Russ.)

145. Schulz J., Mukherjee A., Park K.W. Extensive accumulation of misfolded protein aggregates during natural aging and senescence. Frontiers in Aging Neuroscience. 2022;14:1-19.

146. Chiti F., Dobson K.M. Protein misfolding, amyloid formation, and human disease: a brief review of advances over the past decade. Annu Rev Biochem. 2017;86:27-68.

147. Boellaard J., Harzer K., Schlote W. Variations of the ultrastructure of neuronal lipofuscin during childhood and adolescence in the human Ammon’s horn. Ultrastruct. Pathol. 2006;5: 387-91.

148. Efimov A.A., Maslyakova G.N. On the role of lipofuscin in involutional and pathological processes. Saratov Scientific Medical Journal. 2009; 5(1):111-115. (In Russ.)

149. Kritsilis M., Rizou S.V. Koutsoudaki P.N, at al. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci. 2018;27:19(10):29-37.

150. Korsakova N.K., Roshchina I.F. Neuropsychological approach to the study of normal and pathological aging. Moscow University Bulletin. Lecture. 2009:4-8. (In Russ.)

151. Pannese E. Morphological changes in nerve cells during normal aging. Brain Struct Funct. 2011;216(2):85-89.

152. Martsinkovskaya T.D. Features of mental development in late age. Psychology of maturity and aging. 2018;3:13-17. (In Russ.)

153. Badham S. P., Hay M., Foxon N. at al. When does prior knowledge disproportionately benefit older adults’ memory? Aging, Neuropsychology and Cognition. 2015;23(3):338-365.

154. Tretyakova V.D. Age-related changes in the brain and factors influencing them. Bulletin of Science and Practice. 2022;8(7):151-191. (In Russ.)

155. Sakharova E.N., Umanskaya E.G., Tsvetkova N.A. Gerontopsychology. Moscow: Moscow State Pedagogical University. 2018:350. (In Russ.)

156. Schli V., Leyrer V., Kolassa I.T., et al. Age-related changes in neuronal functional connectivity and their impact on behavior. BMC Neurosci. 2012;13:16.

157. Zimmermann J., Ritter P., Shen K. Structural architecture supports functional organization in the human aging brain at a regionwise and network level. Hum Brain Mapp. 2016;37(7):2645-61.

158. Roshchina I.F. Study of normal and pathological aging (neuropsychological approach). Medical psychology in Russia: electronic. scientific journal 2015;2(31):8. (In Russ.)

159. Chen X., Varghese L., Jagust W.J. A Double-Edged Sword: The Role of Prior Knowledge in Memory Aging. Front. Aging Neurosci. 2022;14:874767.

160. Lissova N.A., Chereneva E.A., Shilov S.N., Nikiforova N.V. Characteristics of cerebral energy metabolism in elderly individuals with impaired cognitive functions. Siberian Journal of Life Sciences and Agriculture. 2022;14(5):246-261. (In Russ.)

161. Deputat I.S., Gribanov A.V., Nekhoroshkova A.N. et al. Energy state of the brain in elderly women living in the north. Human ecology. 2016;9:40-45. (In Russ.)

162. World Health Organization. Owerview of Ageing [cited 24.09.23]. Available from: https://www.who.int/health-topics/ageing#tab=tab_1

163. Goroshko N.V., Patsala S.V. The phenomenon of longevity in the structure of the global population. Social aspects of population health [online publication]. 2023;69(3):8. (In Russ.)

164. United Nations Department of Economic and Social Affairs. Percentage of total population (both sexes combined) by broad age group, region, subregion and country, 1950-2100. World Population Prospects, Population Division, United Nations. (In Russ.) https://population.un.org/wpp/Download/SpecialAggregates/EconomicTrading/

165. https://ru.wikipedia.org/wiki:World population growth, 1700-100, 2022_revision.png

166. Rivera M., Lake J. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature. 2004;431(7005):152-155.

167. Кomarova V.A., Lavrenchenko L.A. Methods for detecting hybridization and genetic introgression in the presence of phylogenetic discrepancies. Russian Journal of General Biology 2021;82(6):403-418. (In Russ.)

168. Shabalin V.N., Shatokhina S.N. The Role of Aging in Human Evolutionary Development. Herald of the Russian Academy of Sciences. 2020;90:6:730-737.

169. Vernadsky V.I. Scientific Thought as a Planetary Phenomenon. Moscow: SCIENCE. 1991:271. (In Russ.)

170. Rubanova E.V., Vernadsky V.I. Noospheric Concept (on the 150th Anniversary of His Birth). Bulletin of Tomsk Polytechnic University. 2013;322(6):171-174. (In Russ.)


Review

For citations:


Shabalin V.N. Dualism of the Aging Process (analytical review). Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2025;15(3):6-30. (In Russ.) https://doi.org/10.20340/vmi-rvz.2025.3.EDT.1

Views: 143


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-762X (Print)
ISSN 2782-1579 (Online)