Structural and functional state of postinfarction myocardium and vascular endothelial growth factor: is there a connection?
https://doi.org/10.20340/vmi-rvz.2023.3.CLIN.10
Abstract
Purpose of the study. To reveal the relationship between the serum concentration of vascular endothelial growth factor and the structural and functional state of the myocardium in patients in the post-infarction period at the stage of rehabilitation.
Materials and methods. We examined 94 patients at the outpatient stage of rehabilitation after ad hoc stenting 6 weeks after myocardial infarction, 10 healthy volunteers without somatic pathology. All participants in the study underwent standard transthoracic echocardiography with assessment of thickness of epicardial fat, assessment of the concentration of vascular endothelial growth factor (VEGF) in peripheral blood by ELISA.
Results and discussion. VEGF values above the median values were associated with lower left ventricular ejection fraction and left ventricular fraction shortening, which indirectly may indicate a more pronounced expression of VEGF in patients with left ventricular systolic dysfunction. Assessing the parameters of LV diastolic dysfunction in groups with different levels of VEGF, no significant differences were found in patients after myocardial infarction. Correlation relationships between the content of VEGF and the thickness of epicardial adipose tissue were not found either among patients or in the control group.
Conclusions. Elevated VEGF values in patients with coronary artery disease at the 6th week of rehabilitation were accompanied by left ventricle systolic dysfunction, in contrast to diastolic dysfunction. There was no direct correlation between the thickness of epicardial fat and the concentration of VEGF in the blood serum in patients with coronary artery disease.
About the Authors
A. M. Vorob'evRussian Federation
Andrey M. Vorobyov, Cardiologist
27 Orenburgskaya str., Ulyanovsk, 432057
V. I. Ruzov
Russian Federation
Viktor I. Ruzov, Dr. Sci. (Med.), Professor, Head of the Department of Faculty Therapy
42 Lev Tolstoy str., Ulyanovsk, 432017
A. S. Salmin
Russian Federation
Andrey S. Salmin, Cardiologist
7 Third International str., Ulyanovsk 432017
M. A. Mel'nikova
Russian Federation
Maria A. Melnikova, Cand. Sci. (Med.), Doctor of Ultrasound diagnostics
27 Orenburgskaya str., Ulyanovsk, 432057
References
1. Basalay O. N., Bushma M. I., Borisenok O. A. Rol' vospaleniya v patogeneze ishemicheskoy bolezni serdtsa i infarkta miokarda. Meditsinskie novosti. 2020;6(309):13-18. (In Russ)
2. Shaik-Dasthagirisaheb Y.B., Varvara G., Murmura G., Saggini A., Potalivo G., Caraffa A. et al. Vascular endothelial growth factor (VEGF), mast cells and inflammation. Int J Immunopathol Pharmacol. 2013;26(2):327-35. https://doi.org/10.1177/039463201302600206
3. Bates D.O. Vascular endothelial growth factors and vascular permeability. Cardiovasc Res. 2010;87(2):262-271. https://doi:10.1093/cvr/cvq105
4. Klimontov V.V., Tyan N.V., Orlov N.B., Prokof'ev V.F., Myakina N.E., Bulumbaeva D.M. i dr. Vzaimosvyaz' urovnya faktora rosta endoteliya sosudov v syvorotke krovi i polimorfizma gena VEGFA s ishemicheskoy bolezn'yu serdtsa u bol'nykh sakharnym diabetom 2-go tipa. Kardiologiya. 2017;57(5):17-22. (In Russ) https://doi.org/10.18565/cardio.2017.5.17-22
5. Huang A., Qi X., Cui Y., Wu Y., Zhou S., Zhang M. Serum VEGF: Diagnostic Value of Acute Coronary Syndrome from Stable Angina Pectoris and Prognostic Value of Coronary Artery Disease. Cardiol Res Pract. 2020;2020:6786302. https://doi.org/10.1155/2020/6786302
6. Hojo Y., Ikeda U., Zhu Y., Okada M., Ueno S., Arakawa H. et al. Expression of vascular endothelial growth factor in patients with acute myocardial infarction. J Am Coll Cardiol. 2000;35(4):968-973. https://doi.org/10.1016/s0735-1097(99)00632-4
7. Zou J., Fei, Q., Xiao H., Wang H., Liu K., Liu M. et al. VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy. J Cell Physiol. 2019;234:17690– 17703. https://doi.org/10.1002/jcp.28395
8. Messadi E., Aloui Z., Belaidi E., Vincent M.P., Couture-Lepetit E., Waeckel L. et al. Cardioprotective effect of VEGF and venom VEGF-like protein in acute myocardial ischemia in mice: effect on mitochondrial function. J Cardiovasc Pharmacol. 2014;63(3):274-281. https://doi.org/10.1097/FJC.0000000000000045
9. Arakawa H., Ikeda U., Hojo Y., Ueno S., Nonaka-Sarukawa M., Yamamoto K. et al. Decreased serum vascular endothelial growth factor concentrations in patients with congestive heart failure. Heart. 2003;89(2):207-208. https://doi.org/10.1136/heart.89.2.207
10. Palmer B. R., Paterson M. A., Frampton C. M., Pilbrow A. P., Skelton, L., Pemberton C. J. et al. Vascular endothelial growth factor-A promoter polymorphisms, circulating VEGF-A and survival in acute coronary syndromes. PLoS One. 2021;16(7):e0254206. https://doi.org/10.1371/journal.pone.0254206
11. McKenney-Drake M.L., Rodenbeck S.D., Bruning R.S., Kole A., Yancey K.W., Alloosh M. et al. Epicardial adipose tissue removal potentiates outward remodeling and arrests coronary atherogenesis. Ann Thorac Surg. 2017;103:1622–1630. https://doi.org/10.1016/j.athoracsur.2016.11.034
12. Venteclef, N., Guglielmi, V., Balse, E., Gaborit, B., Cotillard, A., Atassi, F. et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. European Heart Journal. 2015;36(13):795–805. https://doi.org/10.1093/eurheartj/eht099
13. Shevchenko YU.L., Borshchev G.G., Fomina V.S., Kim K.F.. Investigation of vascular endothelial growth factor in patients with coronary heart disease undergoing coronary bypass surgery. Genyikletki. 2019; 14(1):68–71. (In Russ) https://doi.org/10.23868/201903009
14. Wu Q., Chen Y., Chen S., Wu X., Nong W. Correlation between adiponectin, chemerin, vascular endothelial growth factor and epicardial fat volume in patients with coronary artery disease. Exp Ther Med. 2020;19(2):1095-1102. https://doi.org/10.3892/etm.2019.8299
15. Schlich R., Willems M., Greulich S., Ruppe F., Knoefel W.T., Ouwens D.M. et al. VEGF in the crosstalk between human adipocytes and smooth muscle cells: depot-specific release from visceral and perivascular adipose tissue. Mediators Inflamm. 2013;2013:982458. https://doi.org/10.1155/2013/982458
16. Ovchinnikova L.K., Kostyleva O.I., Tuleuova A.A., Grickevich M.V., Ermilova V.D., Kuznecova O.V. et al. Klinicheskoe znachenie faktora rosta endoteliya sosudov v syvorotke krovi i aktivatora plazminogena urokinaznogo tipa v opuholi pri lokalizovannom rake molochnoj zhelezy. Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. 2016;21(2):511-519. (In Russ) https://doi.org/10.20310/1810-0198-2016-21-2-511-519
17. Papageorgiou M.V., Hadziyannis E., Tiniakos D., Georgiou A., Margariti A., Kostas A. et al. Serum levels of vascular endothelial growth factor in non-alcoholic fatty liver disease. Ann Gastroenterol. 2017;30(2):209-216. https://doi.org/10.20524/aog.2016.0107
18. Yang R., Thomas G.R., Bunting S., Ko A., Ferrara N., Keyt B. et al. Effects of vascular endothelial growth factor on hemodynamics and cardiac performance. J Cardiovasc Pharmacol. 1996 Jun;27(6):838-44. https://doi.org/10.1097/00005344-199606000-00011
19. Ríos-Navarro C., Hueso L., Díaz A., Marcos-Garcés V., Bonanad C., Ruiz-Sauri A. et al. Role of antiangiogenic VEGF-A165b in angiogenesis and systolic function after reperfused myocardial infarction. Rev Esp Cardiol (Engl Ed). 2021;74(2):131-139. https://doi.org/10.1016/j.rec.2020.03.013
20. Pudil R., Vasatova M., Fucikova A., Rehulkova H., Rehulka P., Palicka V. et al. Vascular Endothelial Growth Factor Is Associated with the Morphologic and Functional Parameters in Patients with Hypertrophic Cardiomyopathy. Biomed Res Int. 2015;2015:762950. https://doi.org/10.1155/2015/762950
21. Marcos Garces V., Rios-Navarro C., Hueso L., Diaz A., Bonanad C., Ruiz-Sauri A. et al. Implication of anti-angiogenic VEGF-A165b in angiogenesis and systolic function after reperfused myocardial infarction. European Heart Journal. 2020;41(2). https://doi.org/10.1093/ehjci/ehaa946.3645
22. Michelongona A., Toutouzas K., Synetos A., Tsiamis E., Kapelakis I, Zagouri F. et al. Echocardiography assessment of the impact of bevacizumab on systolic and diastolic function of left ventricle in patients with metastatic cancer. Journal of the American College of Cardiology. 2012; 59(13):E1247. https://doi.org/10.1016/S0735-1097(12)61247-9
23. Yokoyama H., Shioyama W., Shintani T., Maeda S., Hirobe S., Maeda M. et al. Vascular Endothelial Growth Factor Receptor Inhibitors Impair Left Ventricular Diastolic Functions. International Heart Journal. 2021;62(6):1297-1304. https://doi.org/10.1536/ihj.21-307
24. Gulenko O.N., Devyatkin A.A., Boriskin P.V., Pavlova O.N., Leonov V.V., Karimova R.G. Changes in glutathione peroxidase activity in cardiac tissues of rats in response to mechanical injury of the blood-ocular barrier. Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2020;(5):36-44. (In Russ). https://doi.org/10.20340/vmi-rvz.2020.5.3
25. Matloch Z, Kotulák T, Haluzík M. The role of epicardial adipose tissue in heart disease. Physiol Res. 2016;65(1):23-32. https://doi.org/10.33549/physiolres.933036
26. Girerd N., Scridon A., Bessière F., Chauveau S., Geloen A., Boussel L. et al. Periatrial epicardial fat is associated with markers of endothelial dysfunction in patients with atrial fibrillation. PLoS One. 2013;8(10):e77167. https://doi.org/10.1371/journal.pone.0077167
Supplementary files
Review
For citations:
Vorob'ev A.M., Ruzov V.I., Salmin A.S., Mel'nikova M.A. Structural and functional state of postinfarction myocardium and vascular endothelial growth factor: is there a connection? Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2023;13(3):88-92. (In Russ.) https://doi.org/10.20340/vmi-rvz.2023.3.CLIN.10