Preview

Вестник медицинского института «РЕАВИЗ». Реабилитация, Врач и Здоровье

Расширенный поиск

Профилирование аполипопротеинов как вариант персонифицированного подхода к диа-гностике и коррекции дислипидемий

https://doi.org/10.20340/vmi-rvz.2020.4.11

Полный текст:

Аннотация

В диагностике, методах профилактики и лечении дислипидемий остается множество нерешенных вопросов, несмотря на логичные концепции имеющихся клинических рекомендаций. Среди таких развитие сердечно-сосудистых заболеваний, при достижении и поддержании целевых значений липидного обмена. Это возможно объяснить необходимостью смены парадигмы существующих подходов. С этих позиций аполипопротеины как белковые составляющие липопротеинов могут значительно точнее охарактеризовать дислипидемический статус пациента, поскольку их структура и состав являются уникальными. На основании аполипопрофилирования возможен выбор персонифицированной стратегии профилактики и лечения дислипидемий. В настоящее время появились новые данные о функциях апобелков, их генетических полиморфизмах, предложены молекулярные препараты для коррекции их содержания и липидного обмена в целом.

Об авторах

М. А. Качковский
Частное учреждение образовательная организация высшего образования «Медицинский университет «Реавиз»
Россия

Качковский Михаил Аркадьевич - доктор медицинских наук, профессор, директор НИИ атеросклероза и дислипидемий, врач-кардиолог, терапевт, гастроэнтеролог

Самара



И. П. Введенская
ФГБОУ ВО «Самарский государственный медицинский университет» Министерства здравоохранения Российской Федерации
Россия

Введенская Ирина Петровна - кандидат медицинских наук, ассистент

Самара



В. Ю. Введенский
ГБУЗ Самарской области «Отрадненская городская больница»
Россия

Введенский Василий Юрьевич - член Самарской областной ассоциации врачей, врач функциональной диагностики

Самара



А. А. Супильников
Частное учреждение образовательная организация высшего образования «Медицинский университет «Реавиз»
Россия

Супильников Алексей Александрович - кандидат медицинских наук, доцент, первый проректор по научной деятельности, заведующий кафедрой морфологии и патологии

Самара



Ю. В. Пономарева
ООО «АРТБИО»
Россия

Пономарева Юлия Вячеславовна - доктор медицинских наук, член Российского общества хирургов, Член всероссийского общества регенеративной медицины, директор

Самара



М. Н. Милякова
Частное учреждение образовательная организация высшего образования «Медицинский университет «Реавиз»
Россия

Милякова Марина Николаевна - кандидат биологических наук, доцент кафедры морфологии и патологии

Самара



Список литературы

1. Serdechno-sosudistye zabolevaniya // Vsemirnaya organizaciya zdravoohraneni-ya: sajt. – Rezhim dostupa: https://www.who.int/topics/cardiovascular_diseases/ru/

2. Sergienko I.V., Ansheles A.A., Kuharchuk V.V. Ateroskleroz i dislipidemii: so-vremennye aspekty patogeneza, diagnostiki i lecheniya. – M., 2017. – 140 s.

3. Shal'nova S.A. i dr. Analiz smertnosti ot serdechno-sosudistyh zabolevanij v 12 regionah Rossijskoj Federacii, uchastvuyushchih v issledovanii «Epidemi-ologiya serdechno-sosudistyh zabolevanij v razlichnyh regionah Rossii» // Rossijskij kardiologicheskij zhurnal. – 2012. – № 5 (97). – S. 6–11.

4. Carroll M.D., Fryer C.D., Nguyen D.T. High Total and Low High-Density Lipo-protein Cholesterol in Adults: United States // National Center for Health Statistics. – 2017. – Vol. Hyattsville. MD, USA.

5. Eckel R.H. et al. AHA/ACC Guideline on Lifestyle Management to Reduce Cardi-ovascular Risk. A Report of the American College of Cardiology // American Heart Association Task Force on Practice Guidelines. Circulation. – 2013. – Vol. 129. – S76–S99.

6. Bamba V. Update on screening, etiology, and treatment of dyslipidemia in children // JCEM. – 2014. – Vol. 99. – P. 3093–3102.

7. Hood L. Systems biology and medicine: past, present, and future // Med J. – 2013. – Vol. 4. – e0012.

8. Mathur S., Sutton J. Personalized medicine could transform healthcare // Bi-omed Rep. – 2017. – Vol. 7. – P. 3–5.

9. Van der Westhuyzen D.R., de Beer F.C., Webb N.R. HDL cholesterol transport during inflammation // Curr Opin Lipidol. – 2007. – Vol. 18(2). – P. 147–151.

10. Eklund K.K., Niemi K., Kovanen P.T. Immune functions of serum amyloid A // Crit Rev. Immunol. – 2012. – Vol. 32 (4). – Р. 335–348.

11. Davey Smith G., Ebrahim S. Mendelian randomization P. can genetic epidemiol-ogy contribute to understanding environmental determinants of disease? // Int J Epidemiol. – 2003. – Vol. 32. – P. 1–22.

12. Lawlor D.A., Harbord R.M., Sterne J.A. et al. Mendelian randomizationP. us-ing genes as instruments for making causal inferences in epidemiology // Statist Med. – 2008. – Vol. 27. – P. 1133–1163.

13. Wasan K.M. et al. Impact of lipoproteins on the biological activity and dis-position of hydrophobic drugs: implications for drug discovery // Nat Rev. Drug Discov. – 2008. – Vol. 7 (1). – P. 84–99.

14. Phillips J.C., Wrigglers W., Li Z., Schulten K. Predicting the structure of apolipoprotein AI in reconstituted high density lipoprotein disks // Biophys J. – 1997. – Vol. 73. – P. 2337–2346.

15. Huang Y. et al. An abundant dysfunctional apolipoprotein A1 in human athero-ma // Nat Med. – 2014. – Vol. 20 (2). – P. 193–203.

16. Yui Y. et al. Serum prostacyclin stabilizing factor is identical to apolipo-protein A-I (apo A-I). A novel function of apo A-I // J Clin Invest. – 1988. – Vol. 82(3). – P. 803–807.

17. Franceschini G. et al. Relation between the HDL apoproteins and A-I isopro-teins in subjects with the AI Milano abnormality // Metab Clin Exp. – 1981. – Vol. 30 (5). – P. 502–509.

18. Dastani Z. et al. A novel nonsense apolipoprotein A-I mutation (apoA-I(E136X)) causes low HDL cholesterol in French Canadians // Atherosclerosis. – 2006. – Vol. 185 (1). – P. 127–136.

19. Wilhelm A.J. et al. Apo lipoprotein A I Modulates regulatory T cells in auto immune LDL r-/-, Apo A 1-/- mice // J Biol Chem. – 2010. – Vol. 285(46). – P. 16158.

20. Catapano A.L., Pirillo A., Bonacina F., Norata G.D. HDL in innate and adap-tive immunity // Cardiovasc Res. – 2014. – Vol. 103 (3). – P. 372–383.

21. Tuteja S., Rader D.J. High-density lipoproteins in the prevention of cardio-vascular disease: changing the paradigm // Clin Pharmacol Ther. – 2014. – Vol. 96. – P. 48–56.

22. Di Angelantonio E., Sarwar N. Emerging Risk Factors. Collaboration Major li-pids, apolipoproteins, and risk of vascular disease // JAMA. – 2009. – Vol. 302. – P. 1993–2000.

23. Mossuz P. et al. Apolipoprotein A I - a new serum marker correlated to JAK2 V617F proportion at diagnosis in patients with polycythemia vera // Prote-omics Clin Appl. – 2007. – Vol. 1 (12). – P. 1605–1612.

24. Koldamova R.P. et al. Apolipoprotein A I directly interacts with amyloid precursor protein and inhibits A beta aggregation and toxicity // Biochemis-try. – 2001. – Vol. 40 (12). – P. 3553–3560.

25. Rye K.A. et al. The metabolism and anti-atherogenic properties of HDL // J Lipid Res. – 2009. – Vol. 50. – S195–S200.

26. Camont L., Chapman M.J., Kontush A. Biological activities of HDL subpopula-tions and their relevance to cardiovascular disease // Trends Mol Med. – 2011. – Vol. 17. – P. 594–603.

27. Gordon S.M. et al. High density lipoprotein: it’s not just about lipid transport anymore // Trends Endocrinol Metab. – 2011. – Vol. 22. – P. 9–15.

28. Vanhamme L. et al. Apolipoprotein L-I is the trypanosome lytic factor of hu-man serum // Nature. – 2003. – Vol. 422. – P. 83–87.

29. Singh I.P. et al. Lipoproteins account for part of the broad non-specific antiviral activity of human serum // Antiviral Res. 1– 999. – Vol. 42 (3). – P. 211–218.

30. Srinivas R.V. et al. Antiviral effects of Apolipoprotein AI and its synthet-ic amphipathic peptide analogs // Virology. – 1990. – Vol. 176 (1). – P. 48.

31. Neale T. HDL component an enemy to cancer in mice // Cardiology. – 2013. – P. 40579.

32. Ehmann M. et al. Identification of potential markers for the detection of pancreatic cancer through comparative serum protein expression profiling // Pancreas. – 2007. – Vol. 34. – P. 205–214.

33. Chong P.K. et al. Reduced plasma APOA1 level is associated with Gastric Tu-mor Growth in MKN45 mouse xenograft mode // J Proteomics. – 2010. – Vol. 73 (8). – P. 1632–1640.

34. Kozak K.R. et al. Characterization of serum biomarkers for detection of ear-ly stage ovarian cancer // Proteomics. – 2005. – Vol. 5. – P. 4589–4596.

35. Gillard B.K. et al. Apolipoproteins A-I, A-II and E are independently dis-tributed among intracellular and newly secreted HDL of human hepatoma cells // Biochim Biophys Acta. – 2009. – Vol. 1791. – P. 1125–1132.

36. Gao X. et al. Effect of apolipoprotein A-II on the structure and stability of human high-density lipoproteinP. implications for the role of apoA-II in HDL metabolism // Biochemistry. – 2012. – Vol. 51 (23). – P. 4633–4641.

37. Silva R.A. et al. The structure of apolipoprotein A-II in discoidal high density lipoproteins // J Biol Chem. – 2007. – Vol. 282 (13). – P. 9713–9121.

38. Maiga S.F., Kalopissis A.D., Chabert M. Apolipoprotein A-II is a key regula-tory factor of HDL metabolism as appears from studies with transgenic ani-mals and clinical outcomes // Biochimie. – 2014. – Vol. 96. – P. 56–66.

39. Green P.H. et al. Human apolipoprotein A-IV. Intestinal origin and distribu-tion in plasma // J Clin Invest. – 1980. – Vol. 65. – P. 911–919.

40. Deng X. et al. The structure of dimeric apolipoprotein A-IV and its mecha-nism of self-association // Structure. – 2012. – Vol. 20 (5). – P. 767–779.

41. Cui Y. et al. Genetic ablation of apolipoprotein A-IV accelerates Alz-heimer’s disease pathogenesis in a mouse model // Am J Pathol. – 2011. – Vol. 178. – P.1298–1308.

42. Bergström J. et al. Two different types of amyloid deposits – apolipoprotein A-IV and transthyretin – in a patient with systemic amyloidosis // Lab In-vest. – 2004. – Vol. 84 (8). – P. 981–988.

43. Nilsson S.K. et al. Apolipoprotein A-V: a potent triglyceride reducer // Atherosclerosis. – 2011. – Vol. 219 (1). – P.15–21.

44. Sharma V., Forte T.M., Ryan R.O. Influence of apolipoprotein A-V on the met-abolic fate of triacylglycerol // Curr Opin Lipidol. – 2013. – Vol. 24 (2). – P.153–159.

45. Mahley R.W., Weisgraber, K.H., and Huang, Y. Apolipoprotein E: Structure de-termines function ‐ from atherosclerosis to Alzheimer's disease to AIDS // J. Lipid Res. – 2013. – Vol. 50. – S183–S188.

46. Getz, G.S., Reardon, C.A. Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall // J. Lipid Res. – 2009. – Vol. 50. – S156–S161.

47. Davignon, J., Gregg R. E., Sing C.F. Apolipoprotein E polymorphism and ath-erosclerosis // Arteriosclerosis. – 1988. – Vol. 8. – P. 1–21.

48. Segrest J.P. et al. amphipathic helix in the exchangeable apolipoproteins. A review of secondary structure and function // J. Lipid Res. – 1999. – Vol. 33. – P. 141–166.

49. Mahley R.W., Ji S.Z. Remnant lipoprotein metabolism: Key pathways involving cell‐surface heparan sulfate proteoglycans and apolipoprotein E // J. Lipid. Res. – 1999. – Vol. 40. – P. 1–16.

50. Mahley R.W., Huang Y., Rall S.C. Pathogenesis of type III hyperlipopro-teinemia (dysbetalipoproteinemia): questions, quandaries, and paradoxes //J. Lipid Res. – 1999. – Vol. 40. – P. 1933–1949.

51. Sundaram M., Yao Z. Intrahepatic role of exchangeable apolipoproteins in lipoprotein assembly and secretion // Arterioscler. Thromb. Vasc. Biol. – 2012. – Vol. 32. – P. 1073–1078.

52. Huang Y. et al. Overexpression and accumulation of apolipoprotein E as a cause of hypertriglyceridemia // J. Biol. Chem. – 1998. – Vol. 273. – P. 26388–26393.

53. Weisgraber K.H., Innerarity T.L., Mahley R.W. Abnormal lipoprotein recep-tor‐binding activity of the human E apoprotein due to cysteine‐arginine in-terchange at a single site // J. Biol. Chem. – 1982. – Vol. 257. – Р. 2518–2521.

54. Mahley R.W., Huang, Y., Rall S.C. Pathogenesis of type III hyperlipopro-teinemia (dysbetalipoproteinemia): questions, quandaries, and paradoxes // J. Lipid Res. – 1999. – Vol. 40. – P. 1933–1949.

55. Dong L.M. et al. The carboxyl terminus in apolipoprotein E2 and the seven amino acid repeat in apolipoprotein E‐Leiden: role in receptor‐binding activ-ity // J. Lipid Res. – Vol. 39. – P. 1173–1180.

56. Mann, W. A. et al. Apolipoprotein E isoforms and rare mutations: parallel reduction in binding to cells and to heparin reflects severity of associated type III hyperlipoproteinemia // J. Lipid Res. – 1995. – Vol. 36. – Р. 517–525.

57. Saito H. et al. Effects of polymorphism on the lipid interaction of human apolipoprotein E // J. Biol. Chem. – 2003. – Vol. 278. – Р. 40723–40729.

58. Li H. et al. Molecular mechanisms responsible for the differential effects of apoE3 and apoE4 on plasma lipoprotein‐cholesterol levels // Arterioscler. Thromb. Vasc. Biol. – 2013. – Vol. 33. – P. 687–693.

59. Rensen P.C.N., Van Berkel T.J. C. Apolipoprotein E effectively inhibits lip-oprotein lipase‐mediated lipolysis of chylomicron‐like triglyceride‐rich li-pid emulsions in vitro and in vivo // J. Biol. Chem. – 1996. – Vol. 271. – P. 14791–14799.

60. Jong M.C., Hofker M.H., Havekes LM. Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2 // Arterioscler Thromb Vasc Bi-ol. – 1999. – Vol. 19. – P. 472–484.

61. Weisgraber K.H., Mahley R.W., Kowal R.C. Apolipoprotein C-I modulates the interaction of apolipoprotein E with beta-migrating very low density lipo-proteins (beta-VLDL) and inhibits binding of beta VLDL to low density lipo-protein receptor-related protein // J Biol Chem. – 1990. – Vol. 265. – P. 22453–22459.

62. Shachter N.S. Apolipoproteins C–I and C–III as important modulators of lipo-protein metabolism // Curr Opin Lipidol. – 2001. – Vol.12. – P.297–304

63. Shachter N.S., Ebara T., Ramakrishnan R., Steiner G. Combined hyperlipidemia in transgenic mice overexpressing human apolipoprotein CI // J Clin Invest. – 1996. – Vol. 98. – P.846–855

64. Bjorkegren J., Boquist S., Samnegard A. Accumulation of apolipoprotein C–I-rich and cholesterol-rich VLDL remnants during exaggerated postprandial tri-glyceridemia in normolipidemic patients with coronary artery disease // Cir-culation. – 2000. – Vol. 101. – P.227–230

65. Jackson C.L., Bruns G.A., Breslow J.L. Isolation and sequence of a human apolipoprotein CII cDNA clone and its use to isolate and map to human chro-mosome 19 the gene for apolipoprotein CII // Proc. Natl. Acad. Sci. USA. – 1984. – Vol. 81. – P. 2945-2949.

66. Nestel P. J., Fidge N. H. Apoprotein C metabolism in man // Adu. Lipid Res. 1982ю Vol. 19. P. 55-83.

67. LaRosa J.C. et al. A specific apoprotein activator for lipoprotein lipase // Biochem. Bwphys. Res. Commun. – 1970.

68. Jong M.C., Hofker M.H., Havekes L.M. Role of ApoCs in lipoprotein metabo-lism: functional differences between ApoC1, ApoC2 // Arterioscler Thromb Vasc Biol. – 1999. – Vol. 19. – P. 472–484.

69. Kostapanos M.S., Milionis H.J., Lagos K.G. Baseline triglyceride levels and insulin sensitivity are major determinants of the increase of LDL particle size and buoyancy induced by rosuvastatin treatment in patients with primary hyperlipidemia // Eur J Pharmacol. – 2008. – Vol. 59. – P. 327–332.

70. Mabuchi H., Kamon N., Fujita H. Effects of Cs-514 on serumlipoprotein lipid and apolipoprotein levels in patients with familial hypercholesterolemia // Metabolism. – 1987. – Vol. 36. – P. 475–479.

71. Kostapanos M.S., Milionis H.J., Filippatos T.D. A 12-week, prospective, open-label analysis of the effect of rosuvastatin on triglyceride-rich lipo-protein metabolism in patients with primary dyslipidemia // Clin Ther. – 2007. – Vol. 29. – P. 1403–1414.

72. Le N-A., Innis-Whitehouse W., Li X. Lipid and apolipoprotein levels and dis-tribution in patients with hypertriglyceridemia: Effect of triglyceride re-ductions with atorvastatin // Metabolism. – 2000. – Vol. 49. – P. 167–177.

73. Kei A.A., Filippatos T.D., Tsimihodimos V. A review of the role of apolipo-protein C-II in lipoprotein metabolism and cardiovascular disease // Metab Clin Exp. – 2012. – Vol. 61. – P. 906–921.

74. Lam C.W., Yuen Y.P., Cheng W.F. Missense mutation Leu72Pro located on the carboxyl terminal amphipathic helix of apolipoprotein C-II causes familial chylomicronemia syndrome // Clinica Chimica Acta. – 2006. – Vol. 364. – P. 256–259.

75. Okubo M., Toromanovic A., Ebara T. Apolipoprotein C-II: a novel large dele-tion in APOC2 caused by Alu-Alu homologous recombination in an infant with apolipoprotein C-II deficiency // Clinica Chimica Acta. – 2015. – Vol. 438. – P. 148–153.

76. Ueda M., Dunbar R.L., Wolska A., A novel APOC2 missense mutation causing apolipoprotein C-II deficiency with severe triglyceridemia and pancreatitis // J Clin Endocrinol Metab. – 2017. – Vol. 102. – P. 1454–1457.

77. Huynh K. Dual apoC-II mimetic and apoC-III antagonist for hypertriglycer-idaemia // Nat Rev Cardiol. – 2020. – Vol. 17 (4). – P.201.

78. Norata G.D., Tsimikas S., Pirillo A., Catapano A.L. Apolipoprotein C-IIIP. From Pathophysiology to Pharmacology // Trends Pharmacol Sci. – 2015. – Vol. 36. – P. 675–687.

79. Wang C.S., McConathy W.J., Kloer H.U. Modulation of lipoproteinlipase activ-ity by apolipoproteins. Effect of apolipoprotein C-III // J Clin Invest. – 1985. – Vol. 75. – P. 384–390.

80. McConathy W.J., Gesquiere J.C., Bass H., Inhibition of lipoprotein lipase activity by synthetic peptides of apolipoprotein C-III //J Lipid Res. – 1992. – Vol. 33. – P. 995–1003.

81. Kinnunen P.K.J., Ehnholm C. Effect of serum and C-apoproteins from very low-density lipoproteins on human postheparin plasma hepaticnlipase. FEBS Lett. – 1976. – Vol. 65. – P. 354–357.

82. Quarfordt S.H., Michalopoulos G., Schirmer B. The effect of human C apolipo-proteins on the in vitro hepatic metabolism of triglyceride emulsions in the rat // J Biol Chem. – 1982. – Vol. 257. – P. 14642–14647.

83. Mann C.J., Troussard A.A., Yen F.T. Inhibitory effects of specific apolipo-protein C-III isoforms on the binding of triglyceride-rich lipoproteins to the lipolysis-stimulated receptor // J Biol Chem. – 1997. – Vol. 272. – P. 31348–31354.

84. Qin W., Sundaram M., Wang Y. Missense mutation in APOC3 within the C-terminal lipid binding domain of human Apo C-III results in impaired assem-bly and secretion of triacylglycerol-rich very low density lipoproteins: ev-idence that Apo C-III plays a major role in the formation of lipid precur-sors within the microsomal lumen // J Biol Chem. – 2011. – Vol. 286. – P. 27769–27780.

85. Chan D.C., Watts G.F., Nguyen M.N. Apolipoproteins C-III and A-V as predic-tors of very-low-density lipoprotein triglyceride and apolipoprotein B-100 kinetics // Arterioscler Thromb Vasc Biol. – 2006. – Vol. 26. – P. 590–596.

86. Taskinen M.R., Adiels M., Westerbacka J., Dual metabolic defects are re-quired to produce hypertriglyceridemia in obese subjects // Arterioscler Thromb Vasc Biol. – 2011. – Vol. 31. – P. 2144–2150.

87. Cohn J.S., Patterson B.W., Uffelman K.D. Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity // J Clin Endocrinol Metab. – 2004. – Vol. 89. – P. 3949–3855.

88. Mengdie L. et al. Apo CIII enrichment in HDL impairs HDL-mediated cholester-ol efflux capacity // Sci Rep. – 2017. – Vol. 7. – P. 2312.

89. Xu S. Apolipoproteins of HDL can directly mediate binding to the scavenger receptor SR-BI, an HDL receptor that mediates selective lipid uptake // J Lipid Res. – 1997. – Vol. 38. – P.1289–129.

90. Agnani G., Bard J.M., Candelier L. Interaction of LpB, LpBP.E, LpBP. C-III, and LpBP.C-IIIP.E lipoproteins with the low density lipoprotein receptor of HeLa cells // Arterioscler Thromb. – 1991. – Vol. 11. – P. 1021–1029.

91. Clavey V., Lestavel-Delattre S., Copin C. Modulation of lipoprotein B bind-ing to the LDL receptor by exogenous lipids and apolipoproteins CI, CII, CIII, and E // Arterioscler Thromb Vasc Biol. – 1995. – Vol. 15. – P. 963–971.

92. Vaisar T. Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity // J Lipid Res. – 2015. – Vol. 56. – P.1519–1530.

93. Han C.Y. Serum amyloid A impairs the antiinflammatory properties of HDL // J Clin Invest. – 2016. – Vol. 126. – P.266–281.

94. Kawakami A. Apolipoprotein CIII-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase C al-pha-mediated nuclear factor-kappaB activation // Arterioscler Thromb Vasc Biol. – 2007. – Vol. 27. – P. 219–225.

95. Le N.A., Ginsberg H.N. Independent regulation of plasma apolipoprotein-C-II and apolipoprotein-C-III concentrations in very low-density and high-density lipoproteins – implications for the regulation of the catabolism of these lipoproteins // J Lipid Res. – 1988. – Vol. 29. – P. 669–677.

96. Crosby J., Peloso G.M., Auer P.L., TG and HDL Working Group of the Exome Se-quencing Project, National, Heart, Lung, and Blood Institute, Reiner AP, Boerwinkle E., Kathiresan S. Loss-of-function mutations in APOC3, triglycer-ides, and coronary disease // N Engl J Med. – 2014. – Vol. 371. – P. 22–31.

97. Jorgensen A.B., Frikke-Schmidt R., Nordestgaard B.G., Tybjaerg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. – 2014. – Vol. 371. – P. 32–41.

98. Jensen M.K., Rimm E.B., Furtado J.D., Sacks F.M. Apolipoprotein C-III as a Potential Modulator of the Association Between HDL-Cholesterol and Incident Coronary Heart Disease // J Am Heart Assoc. – 2012. – Vol. 1. – P. jah3–e000232.

99. Riwanto M. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling // Circulation. – 2013. – Vol. 127. – P.891–904.

100. Investigators O.T. Omega-3 fatty acids and cardiovascular outcomes in pa-tients with dysglycemia // N Engl J Med. – 2012. – Vol. 367. – P. 309–318.

101. Chang P.Y. Identification of the HDL- ApoCIII to VLDL-ApoCIII ratio as a predictor of coronary artery disease in the general populationP. the Chin-Shan Community Cardiovascular Cohort (CCCC) study in Taiwan // Lipids Health Dis. – 2012. – Vol. 11. – P. 162.

102. Xiong X. The association of HDL-apoCIII with coronary heart disease and the effect of statin treatment on it // Lipids Health Dis. – 2015. – Vol. 14. – P. 127.

103. Norata G.D., Tsimikas S., Pirillo A., Catapano A.L. Apolipoprotein C-IIIP. From Pathophysiology to Pharmacology. Trends Pharmacol Sci. – 2015. – Vol. 36. – P. 675–687.

104. Graham M.J., Lee R.G., Bell T.A., Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman pri-mates, and humans // Circ Res. – 2013. – Vol. 112. – P. 1479–1490.

105. Diffenderfer M.R., Schaefer E.J. The composition and metabolism of large and small LDL // Curr Opin Lipidol. – 2014. – Vol. 25. – P. 221–226.

106. Jialal I. A practical approach to the laboratory diagnosis of dyslipidemia // Am. J. Clin. Pathol. – 1996. – Vol. 106 (1). – P.128–138.

107. Contois J.H. et al. AACC Lipoproteins and Vascular Diseases Division Working Group on Best Practices. Apolipoprotein B and cardiovascular disease risk: position statement from the AACC Lipoproteins and Vascular Diseases Division Working Group on Best Practices // Clin. Chem. – 2009. – Vol. 55 (3). – P.407–419.

108. Wilson P.W.F. et al. Systematic Review for the 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/ AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood CholesterolP. A Report of the American College of Cardi-ology /American Heart Association Task Force on Clinical Practice Guidelines // Circulation. – 2019. – Vol. 139 (25). – P. e1144-e1161.

109. Devaraj S., Jialal I. Biochemistry, Apolipoprotein B. // StatPearls. StatPearls Publishing, Treasure Island (FL). 2019.

110. Myant N.B. Familial defective apolipoprotein B-100: a review, including some comparisons with familial hypercholesterolaemia // Atherosclerosis. – 1993. – Vol. 104. – P. 1–18.

111. Jialal I., Barton D.P. Diagnosis of Familial Hypercholesterolemia // Am. J. Clin. Pathol. – 2016. – Vol. 145 (4). – P.437–439.

112. Berman A.N., Blankstein R. Optimizing Dyslipidemia Management for the Pre-vention of Cardiovascular Disease: Focus on Risk Assessment and Therapeutic Options // Curr Cardiol Rep. – 2019. – Vol. 21 (9). – P. 110.

113. Dubé J.B., Boffa M.B., Hegele R.A. Lipoprotein(a): more interesting than ev-er after 50 years // Curr Opin Lipidol. – 2012. – Vol. 23 (2). – Р. 133–140.

114. Boerwinkle E. et al. Apolipoprotein(a) gene accounts for greater than 90 % of the variation in plasma lipoprotein(a) concentrations // J. Clin. Invest. – 1992. – Vol. 90. – Р. 52–60.

115. Kraft H.G. et al. Frequency distributions of apolipoprotein(a) kringle IV repeat alleles and their effects on lipoprotein(a) levels in Caucasian, Asian, and African populations: the distribution of null alleles is non-random // Eur. J. Hum. Genet. – 1996. – Vol. 4. – P. 74–87.

116. Kraft H.G. et al. The apolipoprotein (a) gene: a transcribed hypervariable locus controlling plasma lipoprotein (a) concentration // Hum. Genet. – 1992. – Vol. 90. – P. 220–230.

117. Lackner C. et al. Molecular basis of apolipoprotein (a) isoform size hetero-geneity as revealed by pulsed-field gel electrophoresis // J. Clin. Invest. – 1991. – Vol. 87. – P. 2153–2161.

118. Schmidt K., Noureen A., Kronenberg F., Utermann G. Structure, function, and genetics of lipoprotein (a) // J. Lipid Res. – 2016. – Vol. 57. – P. 1339–1359.

119. Leibundgut G. et al. Determinants of binding of oxidized phospholipids on apolipoprotein (a) and lipoprotein (a) // J Lipid Res. – 2013. – Vol. 54 (10). – P. 2815–2830.

120. Miles L.A. et al. Interaction of Lp(a) with plasminogen binding sites on cells // Thromb Haemost. – 1995. – Vol. 73. – P. 458–465.

121. Sotiriou S.N. et al. Lipoprotein(a) in atherosclerotic plaques recruits in-flammatory cells through interaction with mac-1 integrin // FASEB J. – 2006. – Vol. 20. – P. 559–561.

122. Jacobson T.A. Lipoprotein(a). Cardiovascular Disease, and Contemporary Man-agement // Mayo Clin Proc. – 2013. – Vol. 88 (11). – P. 1294–1311.

123. Lippi G., Guidi G. Lipoprotein(a): an emerging cardiovascular risk factor // Crit Rev Clin Lab Sci. – 2003. – Vol. 40. – P. 1–42.

124. Becker L. et al. A ligand-induced conformational change in apolipoprotein(a) enhances covalent Lp (a) formation // J Biol Chem. – 2003. – Vol. 278 (16). – P. 14074–14081.

125. Ho-Tin-Noe B. et al. Functional hierarchy of plasminogen kringles 1 and 4 in fibrinolysis and plasmin-induced cell detachment and apoptosis // FEBS J. – 2005. – Vol. 272. – P. 3387–3400.

126. Romagnuolo R. et al. Inhibition of plasminogen activation by apo(a): role of carboxyl-terminal lysines and identification of inhibitory domains in apo(a) // J Lipid Res. – 2014. – Vol. 55 (4). – P. 625–634.

127. Kang C. et al. Lipoprotein(a) isoforms display differences in affinity for plasminogen-like binding to human mononuclear cells // Arterioscler Thromb Vasc Biol. – 1997. – Vol. 17. – P. 2036–2043.

128. Gabel B.R. et al. Lipoprotein(a) assembly. Quantitative assessment of the role of apo(a) kringle IV types 2-10 in particle formation // Arterioscler Thromb Vasc Biol. – 1996. – Vol. 16. – P. 1559–1567.

129. Willeit P., Kiechl S., Kronenberg F. Discrimination and net reclassification of cardiovascular risk with lipoprotein(a): prospective 15-year outcomes in the Bruneck Study // J Am Coll Cardiol. – 2014. – Vol. 64 (9). – P. 851–860.

130. Sechi L.A., Kronenberg F., De Carli S. Association of serum lipoprotein(a) levels and apolipoprotein(a) size polymorphism with target-organ damage in arterial hypertension // JAMA. – 1997. – Vol. 277. – P. 1689.

131. Kassner U., Schlabs T., Rosada A. Lipoprotein(a)-An independent causal risk factor for cardiovascular disease and current therapeutic options // Athero-scler Suppl. – 2015. – Vol. 18. – P. 263–267.

132. Erqou S., Kaptoge S., Perry P.L. Emerging Risk Factors Collaboration Lipo-protein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality // JAMA. – 2009. – Vol. 302( 4). – P. 412–423.

133. Yeang C., Witztum J.L., Tsimikas S. 'LDL-C' = LDL-C + Lp(a)-C: implications of achieved ultra-low LDL-C levels in the proprotein convertase subtil-isin/kexin type 9 era of potent LDL-C lowering // Curr Opin Lipidol. – 2015. – Vol. 26 (3). – Vol. 169–178.

134. Van van Wissen S., Smilde T.J., Trip M.D. Long term statin treatment reduces lipoprotein(a) concentrations in heterozygous familial hypercholesterolaemia // Heart. – 2003. – Vol. 89. –P. 893–896.

135. Borresen A.L., Berg K., Dahlén G. The effect of Gemfibrozil on human serum apolipoproteins and on serum reserve cholesterol binding capacity // (SRCBC) Artery. – 1981. – Vol. 9. – P. 77.

136. Nordestgaard B.G., Chapman M.J., Ray K. Lipoprotein(a) as a cardiovascular risk factor: current status // Eur Heart J. – 2010. – Vol. 31(23). – P. 2844–2853.

137. Graham M.J., Viney N., Crooke R. Antisense Inhibition of Apolipoprotein(a) to Lower Plasma Lipoprotein(a) Levels in Humans // J Lipid Res. – 2015. – pii: jlr. R052258.

138. Tsimikas S., Viney N.J., Hughes S.G. Antisense therapy targeting apolipopro-tein(a): a randomised, double-blind, placebo-controlled phase 1 study // Lancet. – 2015. – Vol. 386 (10002). – P. 1472–1483.


Для цитирования:


Качковский М.А., Введенская И.П., Введенский В.Ю., Супильников А.А., Пономарева Ю.В., Милякова М.Н. Профилирование аполипопротеинов как вариант персонифицированного подхода к диа-гностике и коррекции дислипидемий. Вестник медицинского института «РЕАВИЗ». Реабилитация, Врач и Здоровье. 2020;(4):88-104. https://doi.org/10.20340/vmi-rvz.2020.4.11

For citation:


Kachkovsky M.A., Vvedenskaya I.P., Vvedensky V.Yu., Supilnikov A.A., Ponomareva J.V., Milyakova M.N. Ersonified diagnostic and correction dyslipidemia approach by profiling of apolipoproteins. Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2020;(4):88-104. (In Russ.) https://doi.org/10.20340/vmi-rvz.2020.4.11

Просмотров: 11


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-762X (Print)