Artificial intelligence in maxillary artery anatomy analysis: conceptual approach rationale
https://doi.org/10.20340/vmi-rvz.2025.5.MORPH.2
Abstract
The maxillary artery demonstrates considerable anatomical variability, creating substantial challenges in preoperative planning for maxillofacial surgical interventions. Traditional preoperative imaging methods require significant time for data interpretation and depend heavily on specialist expertise. The accumulation of large DICOM medical image datasets creates prerequisites for applying machine learning methods and deep neural networks to automate vascular structure analysis. This work presents a conceptual rationale for applying artificial intelligence technologies to identify anatomical variations of the maxillary artery based on computed tomography and cone-beam computed tomography data analysis. We analyze the current state of deep learning algorithm applications in medical visualization of head and neck vascular structures, systematize known anatomical variations of the maxillary artery and their clinical significance, and formulate technical requirements for potential automated analysis system architecture. The proposed conceptual approach includes using convolutional neural networks for semantic segmentation of the vascular network, three-dimensional reconstruction algorithms for visualizing topographic relationships, and a classification system for identified structural variants by surgical risk degree. We substantiate the necessity of creating a specialized training dataset of annotated maxillary artery images to ensure high recognition accuracy. We discuss potential advantages of automated analysis, including standardization of diagnostic approaches, reduction of preoperative planning time, and minimization of intraoperative complications related to vascular injury. We acknowledge existing technical and organizational limitations of implementing such systems, including the need for validation on large clinical cohorts and integration into existing medical information systems.
About the Authors
Ya. E. NemstsveridzeРоссия
Yakov E. Nemstsveridze, Dentist, Postgraduate student, Chapaevskaya St., 227, Samara, 443001;
specialist of the Scientific and Innovation Department, Krasnobogatyrskaya Street, Bldg. 2, Moscow, 107564;
doctor-clinical resident of the Department of Orthopedic Dentistry, Shchepkina Street, Bldg. 61/2, Moscow, 129110
Kh. A. Nadzhafov
Россия
Najafov Khatyam Aydynovich, 5th year student, Faculty of Medicine,
Krasnobogatyrskaya Street, Bldg. 2, Moscow, 107564
E. Yu. Anosova
Россия
Ekaterina Yu. Anosova, Surgeon,
Abrikosovsky lane, 2, Moscow, 119435
B. I. Yaremin
Россия
Boris Ivanovich Yaremin, Cand. Sci. (Med.),, Associate Professor, Associate Professor of the Department of Morphology and Pathology, Chapaevskaya St., 227, Samara, 443001;
Head of the Department of Surgical Diseases, Krasnobogatyrskaya Street, Bldg. 2, Moscow, 107564;
surgeon, researcher
References
1. 1 Touré G. Distribution of the maxillary artery in the deep regions of the face and the maxilla: clinical applications. J Plast Reconstr Aesthet Surg. 2019;72(6):1020-1024. https://doi.org/10.1016/j.bjps.2019.02.008
2. 2 Whyte A, Boeddinghaus R. The maxillary sinus: physiology, development and imaging anatomy. Dentomaxillofac Radiol. 2019;48(8):20190205. https://doi.org/10.1259/dmfr.20190205
3. 3 Tsai GE, Volkov SI, Lavrentiev PA, Lavrentiev AA. Topographic and anatomical features of the blood supply of the upper and lower jaws. Dentistry. 2015;94(1):7-10. (In Russ.)
4. 4 Ananyev NI, Abramov AV, Ananyev NN, Ilyin MV. Some aspects of surgical anatomy of the maxillary artery and its branches. Educational Bulletin "Consciousness". 2013;15(4):28-29. (In Russ.)
5. 5 Gümüssoy İ, Mijiritsky E, Sarikir C, Celik HH. Anatomical assessment of the posterior superior alveolar artery using cone beam computed tomography. Int J Oral Maxillofac Implants. 2018;33(1):134-138. https://doi.org/10.11607/jomi.6138
6. 6 Hwang Y, Nam IH, Choi HG, et al. Prevalence and features of the posterior superior alveolar artery based on CBCT. Surg Radiol Anat. 2021;43(7):1019-1027. https://doi.org/10.1007/s00276-021-02698-w
7. 7 Rusu MC, Vrapciu AD, Popescu ŞA. Fenestrated maxillary artery. J Craniofac Surg. 2022;33(8):e861-e863. https://doi.org/10.1097/SCS.0000000000008788
8. 8 Dumitru CC, Rusu MC, Vrapciu AD. Maxillary artery traversing through the temporal muscle. J Craniofac Surg. 2024. https://doi.org/10.1097/SCS.0000000000010029
9. 9 Alvernia JE, Hidalgo J, Sindou MP, et al. The maxillary artery and its variants: an anatomical study with neurosurgical applications. Acta Neurochir (Wien). 2017;159(4):655-664. https://doi.org/10.1007/s00701-017-3092-5
10. 10 Ottone NE, Sandoval C, Cid-Gutierrez P, et al. Systematic review and meta-analysis of the anatomy of the maxillary artery using the Anatomical Quality Assurance (AQUA) checklist. Surg Radiol Anat. 2021;43(11):1875-1886. https://doi.org/10.1007/s00276-021-02825-3
11. 11 Solar P, Geyerhofer U, Traxler H, et al. Blood supply to the maxillary sinus relevant to sinus floor elevation procedures. Clin Oral Implants Res. 1999;10(1):34-44. https://doi.org/10.1034/j.1600-0501.1999.100105.x
12. 12 Elian N, Wallace S, Cho SC, Jalbout ZN, Froum S. Distribution of the maxillary artery as it relates to sinus floor augmentation. Int J Oral Maxillofac Implants. 2005;20(5):784-787.
13. 13 Lee CY, Yanagihara L, Suzuki JB. Brisk arterial bleeding during dental implant surgery: a case report. Implant Dent. 2012;21(5):368-373. https://doi.org/10.1097/ID.0b013e31826faafd
14. 14 Peñarrocha-Diago M, Maestre-Ferrín L, Peñarrocha-Oltra D, et al. Hemorrhagic complications in dental implant surgery. Med Oral Patol Oral Cir Bucal. 2012;17(6):e1023-e1031. https://doi.org/10.4317/medoral.18177
15. 15 Berberi A, LeClercq P, Thelen P, et al. CT image analysis for risk assessment of posterior superior alveolar artery during sinus floor elevation. Clin Implant Dent Relat Res. 2014;16(2):238-246. https://doi.org/10.1111/j.1708-8208.2012.00474.x
16. 16 Tsai GE, Lavrentiev PA, Lavrentiev AA. Blood supply to the maxilla in normal conditions and after fragmentary osteotomy. Dentistry. 2013;92(2):12-14. (In Russ.)
17. 17 Bähr W, Sieg P, Wiltfang J, et al. Die Arteria maxillaris und ihre Äste — chirurgische Aspekte bei Tumoren der Nasen-Nebenhöhlen. Mund Kiefer Gesichtschir. 1996;1(Suppl 1):S48-S53.
18. 18 Yeung AWK, Hung KF, Li DTS, Leung YY. The use of CBCT in evaluating the health and pathology of the maxillary sinus. Diagnostics (Basel). 2022;12(11):2819. https://doi.org/10.3390/diagnostics12112819
19. 19 Benavides E, Rios HF, Ganz SD, et al. Use of cone beam computed tomography in implant dentistry: the International Congress of Oral Implantologists consensus report. Implant Dent. 2012;21(2):78-86. https://doi.org/10.1097/ID.0b013e31824885b5
20. 20 Kiljunen T, Kaasalainen T, Suomalainen A, Kortesniemi M. Dental cone beam CT: a review. Phys Med. 2015;31(8):844-860. https://doi.org/10.1016/j.ejmp.2015.09.004
21. 21 Ilgüy D, Ilgüy M, Dolekoglu S, Fisekcioglu E. Evaluation of the posterior superior alveolar artery and the maxillary sinus with CBCT. Braz Oral Res. 2013;27(5):431-437. https://doi.org/10.1590/S1806-83242013000500007
22. 22 Sharma N, Ray B, Sharma P, et al. Analysis of time requirements for maxillofacial 3D reconstruction from computed tomography scans. Int J Oral Maxillofac Surg. 2019;48(Suppl 1):97-98.
23. 23 Prokop M. Multislice CT angiography. Eur J Radiol. 2000;36(2):86-96. https://doi.org/10.1016/S0720-048X(00)00271-0
24. 24 Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115- 118. https://doi.org/10.1038/nature21056
25. 25 Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. https://doi.org/10.1038/s41591-018-0300-7
26. 26 Rajpurkar P, Irvin J, Ball RL, et al. Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 2018;15(11):e1002686. https://doi.org/10.1371/journal.pmed.1002686
27. 27 McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89- 94. https://doi.org/10.1038/s41586-019-1799-6
28. 28 Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500-510. https://doi.org/10.1038/s41568-018-0016-5
29. 29 De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24(9):1342-1350. https://doi.org/10.1038/s41591-018-0107-6
30. 30 Zreik M, Lessmann N, van Hamersvelt RW, et al. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis. Med Image Anal. 2018;44:72-85. https://doi.org/10.1016/j.media.2017.11.008
31. 31 Haq IU, Xu B. Artificial intelligence in coronary CT angiography: current status and future prospects. Cardiovasc Diagn Ther. 2022;12(1):142- 156. https://doi.org/10.21037/cdt-21-274
32. 32 Krittanawong C, Johnson KW, Rosenson RS, et al. Deep learning for cardiovascular medicine: a practical primer. Eur Heart J. 2019;40(25):2058-2073. https://doi.org/10.1093/eurheartj/ehz056
33. 33 Livne M, Rieger J, Aydin OU, et al. A U-Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease. Front Neurosci. 2019;13:97. https://doi.org/10.3389/fnins.2019.00097
34. 34 Hilbert A, Ramos LA, van Os HJA, et al. Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke. Comput Biol Med. 2019;115:103516. https://doi.org/10.1016/j.compbiomed.2019.103516
35. 35 Duan Y, Feng Y, Wang L, et al. Automatic 3D cerebrovascular segmentation based on 3D TSCSE-ResUnet. Neural Comput Appl. 2021;33:10909-10921. https://doi.org/10.1007/s00521-020-05653-4
36. 36 Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A, eds. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer; 2015:234-241. https://doi.org/10.1007/978-3-319-24574-4_28
37. 37 Isensee F, Jaeger PF, Kohl SAA, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203-211. https://doi.org/10.1038/s41592-020-01008-z
38. 38 Çiçek Ö, Abdulkadir A, Lienkamp SS, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin S, Joskowicz L, Sabuncu M, Unal G, Wells W, eds. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Lecture Notes in Computer Science, vol 9901. Springer; 2016:424-432. https://doi.org/10.1007/978-3-319-46723-8_49
39. 39 Milletari F, Navab N, Ahmadi SA. V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). IEEE; 2016:565-571. https://doi.org/10.1109/3DV.2016.79
40. 40 Hatamizadeh A, Tang Y, Nath V, et al. UNETR: Transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. IEEE; 2022:574-584. https://doi.org/10.1109/WACV51458.2022.00181
41. 41 Hatamizadeh A, Nath V, Tang Y, et al. Swin UNETR: Swin Transformers for semantic segmentation of brain tumors in MRI images. In: Crimi A, Bakas S, eds. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Lecture Notes in Computer Science, vol 12962. Springer; 2022:272-284. https://doi.org/10.1007/978-3-031-08999-2_22
42. 42 Oktay O, Schlemper J, Folgoc LL, et al. Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999. Published online April 11, 2018. https://doi.org/10.48550/arXiv.1804.03999
43. 43 Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov D, et al, eds. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Lecture Notes in Computer Science, vol 11045. Springer; 2018:3-11. https://doi.org/10.1007/978-3-030-00889-5_1
44. 44 Shin HC, Roth HR, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35(5):1285-1298. https://doi.org/10.1109/TMI.2016.2528162
45. 45 Raghu M, Zhang C, Kleinberg J, Bengio S. Transfusion: understanding transfer learning for medical imaging. In: Wallach H, et al, eds. Advances in Neural Information Processing Systems 32. Curran Associates; 2019:3347-3357.
46. 46 Azizi S, Mustafa B, Ryan F, et al. Big self-supervised models advance medical image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. IEEE; 2021:3478-3488. https://doi.org/10.1109/ICCV48922.2021.00346
47. 47 Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning. PMLR; 2020:1597-1607.
48. 48 Zhou HY, Lu C, Yang S, Yu Y. ConvNets vs. Transformers: whose visual representations are more transferable? In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. IEEE; 2021:2230-2238.
49. 49 Wolterink JM, Leiner T, Viergever MA, Išgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging. 2017;36(12):2536-2545. https://doi.org/10.1109/TMI.2017.2708987
50. 50 Nie D, Trullo R, Lian J, et al. Medical image synthesis with context-aware generative adversarial networks. In: Descoteaux M, et al, eds. Medical Image Computing and Computer Assisted Intervention – MICCAI 2017. Lecture Notes in Computer Science, vol 10435. Springer; 2017:417-425. https://doi.org/10.1007/978-3-319-66179-7_48
51. 51 Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552. https://doi.org/10.1016/j.media.2019.101552
52. 52 Wolterink JM, Mukhopadhyay A, Leiner T, et al. Implicit attenuation correction for cardiac SPECT using deep learning with generative adversarial networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). IEEE; 2017:133-136. https://doi.org/10.1109/ISBI.2017.7950502
53. 53 Yang Q, Li N, Zhao Z, et al. MRI cross-modality image-to-image translation. Sci Rep. 2020;10:3753. https://doi.org/10.1038/s41598-020-60520-6
54. 54 Wang Y, Yao Q, Kwok JT, Ni LM. Generalizing from a few examples: a survey on few-shot learning. ACM Comput Surv. 2020;53(3):1-34. https://doi.org/10.1145/3386252
55. 55 Zhao A, Balakrishnan G, Durand F, et al. Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE; 2019:8543-8553. https://doi.org/10.1109/CVPR.2019.00874
56. 56 Roy AG, Conjeti S, Navab N, Wachinger C. QuickNAT: a fully convolutional network for quick and accurate segmentation of neuroanatomy. Neuroimage. 2019;186:713-727. https://doi.org/10.1016/j.neuroimage.2018.11.042
57. 57 Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 2020;368:m689. https://doi.org/10.1136/bmj.m689
58. 58 Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health. 2019;1(6):e271-e297. https://doi.org/10.1016/S2589-7500(19)30123-2
59. 59 Vasey B, Nagendran M, Campbell B, et al. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat Med. 2022;28(5):924-933. https://doi.org/10.1038/s41591-022-01772-9
60. 60 Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology. 2018;286(3):800-809. https://doi.org/10.1148/radiol.2017171920
61. 61 Aftahy AK, Forno I, Reinacher P, et al. Automated surgical planning for brain arteriovenous malformations using machine learning. J Neurosurg. 2021;135(6):1755-1763. https://doi.org/10.3171/2020.10.JNS202849
62. 62 Kahn CE Jr, Langlotz CP, Burnside ES, et al. Toward best practices in radiology reporting. Radiology. 2009;252(3):852-856. https://doi.org/10.1148/radiol.2523081992
63. 63 Kilic A. Artificial intelligence and machine learning in cardiovascular health care. Ann Thorac Surg. 2020;109(5):1323-1329. https://doi.org/10.1016/j.athoracsur.2019.09.042
64. 64 Esses SJ, Taneja S, Cox AJ, et al. Automated image quality evaluation of T2-weighted liver MRI utilizing deep learning architecture. J Magn Reson Imaging. 2018;47(3):723-728. https://doi.org/10.1002/jmri.25779
65. 65 Maresky HS, Oikonomou A, Ali I, et al. Virtual reality and cardiac anatomy: exploring immersive three-dimensional cardiac imaging, a pilot study in undergraduate medical anatomy education. Clin Anat. 2019;32(2):238-243. https://doi.org/10.1002/ca.23292
66. 66 Lim KHA, Loo ZY, Goldie SJ, et al. Use of 3D printed models in medical education: a randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat Sci Educ. 2016;9(3):213-221. https://doi.org/10.1002/ase.1573
67. 67 Yammine K, Violato C. A meta-analysis of the educational effectiveness of three-dimensional visualization technologies in teaching anatomy. Anat Sci Educ. 2015;8(6):525-538. https://doi.org/10.1002/ase.1510
68. 68 Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med. 2020;3:118. https://doi.org/10.1038/s41746-020-00324-0
69. 69 Muehlematter UJ, Daniore P, Vokinger KN. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015-20): a comparative analysis. Lancet Digit Health. 2021;3(3):e195-e203. https://doi.org/10.1016/S2589-7500(20)30292-2
70. 70 Morley J, Machado CCV, Burr C, et al. The ethics of AI in health care: a mapping review. Soc Sci Med. 2020;260:113172. https://doi.org/10.1016/j.socscimed.2020.113172
71. 71 Char DS, Shah NH, Magnus D. Implementing machine learning in health care - addressing ethical challenges. N Engl J Med. 2018;378(11):981-983. https://doi.org/10.1056/NEJMp1714229
72. 72 Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447-453. https://doi.org/10.1126/science.aax2342
73. 73 Kohli M, Prevedello LM, Filice RW, Geis JR. Implementing machine learning in radiology practice and research. AJR Am J Roentgenol. 2017;208(4):754-760. https://doi.org/10.2214/AJR.16.17224
74. 74 Kitamura FC. What is "AI-ready" data? Implications of using artificial intelligence algorithms for clinical decision support in radiology. AJR Am J Roentgenol. 2021;216(2):320-324. https://doi.org/10.2214/AJR.20.24043
75. 75 Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2018;2(1):35. https://doi.org/10.1186/s41747-018-0061-6
76. 76 Neri E, de Souza N, Brady A, et al. What the radiologist should know about artificial intelligence - an ESR white paper. Insights Imaging. 2019;10(1):44. https://doi.org/10.1186/s13244-019-0738-2
77. 77 Sudlow C, Gallacher J, Allen N, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779
78. 78 Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203- 209. https://doi.org/10.1038/s41586-018-0579-z
79. 79 Leitsalu L, Haller T, Esko T, et al. Cohort profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int J Epidemiol. 2015;44(4):1137-1147. https://doi.org/10.1093/ije/dyt268
80. 80 Gaziano JM, Concato J, Brophy M, et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J Clin Epidemiol. 2016;70:214-223. https://doi.org/10.1016/j.jclinepi.2015.09.016
81. 81 Kolsanov A.V., Nazaryan A.K., Ivanova V.D. Methods of virtual modeling in the study of the anatomy of blood vessels. Journal of Anatomy and Histopathology. 2014;3(2):24–27. (In Russ.)
Review
For citations:
Nemstsveridze Ya.E., Nadzhafov Kh.A., Anosova E.Yu., Yaremin B.I. Artificial intelligence in maxillary artery anatomy analysis: conceptual approach rationale. Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2025;15(5):163-180. (In Russ.) https://doi.org/10.20340/vmi-rvz.2025.5.MORPH.2
JATS XML


















