Epithelial barrier dysfunction in bronchial asthma
https://doi.org/10.20340/vmi-rvz.2022.4.MORPH.3
Abstract
The pathogenesis of bronchial asthma is based on chronic inflammation as a response to etiological factors. It causes bron-chial hyperreactivity, remodeling of the respiratory tract and hypersecretion of mucus. Epithelial damage is a pathological sign observed in all bronchial asthma phenotypes. The purpose of this review: to analyze changes in the epithelial barrier in bronchial asthma, to reflect potential therapeutic ways of exposure. Changes in the epithelial barrier include a violation of the ratio of mucins (MUC5AC to MUC5B), violations of intercellular connections when exposed to allergens, infectious agents, suspended particles. Currently, various diagnostic approaches are being developed to detect epithelial barrier dysfunction. Exposure to the epithelial barrier of the respiratory tract may be a promising new therapeutic strategy for asthma and related allergic diseases. The preservation or restoration of the function of the air-way barrier is a new area of respiratory diseases that requires extensive further research.
About the Authors
R. N. KhramovaRussian Federation
Nizhny Novgorod
Competing Interests:
The author declare no competing interests.
T. I. Eliseeva
Russian Federation
Nizhny Novgorod
Competing Interests:
The author declare no competing interests.
T. E. Potemina
Russian Federation
Nizhny Novgorod
Competing Interests:
The author declare no competing interests.
References
1. GINA, “Global Initiative for Asthma – GINA 2021,” Ginasthma.org, 2021.
2. Innes Asher M., Garcia-Marcos L., Pearce N.E., Strachan D.P. Trends in worldwide asthma prevalence. Eur. Respir. J. 2020;56(6). https://doi.org/10.1183/13993003.02094-2020
3. Svenningsen S., Nair P. Asthma endotypes and an overview of targeted therapy for asthma. Frontiers in Medicine. 2017 SEP.;4. https://doi.org/10.3389/fmed.2017.00158
4. Fahy J.V. Type 2 inflammation in asthma - present in most, absent in many. Nature Reviews Immunology. 2015;15(1). https://doi.org/10.1038/nri3786
5. Papi A., Saetta M., Fabbri L. Severe asthma: Phenotyping to endotyping or vice versa? 2017;49(2). https://doi.org/10.1183/13993003.00053-2017.
6. Xiao C. et al. Defective epithelial barrier function in asthma. J. Allergy Clin. Immunol. 2011;128(3). https://doi.org/10.1016/j.jaci.2011.05.038
7. Ridley C., Thornton D.J. Mucins: The frontline defence of the lung. Biochemical Society Transactions. 2018;46(5). https://doi.org/10.1042/BST20170402
8. Steelant B. Epithelial dysfunction in chronic respiratory diseases, a shared endotype? Current opinion in pulmonary medicine. 2020;26(1). https://doi.org/10.1097/MCP.0000000000000638
9. Hammad H., Lambrecht B.N. Barrier Epithelial Cells and the Control of Type 2 Immunity. Immunity. 2015;43(1). https://doi.org/10.1016/j.immuni.2015.07.007
10. Davies D.E. Epithelial barrier function and immunity in asthma. Ann. Am. Thorac. Soc. 2014;11. https://doi.org/10.1513/AnnalsATS.201407-304AW
11. Radicioni G. et al. Airway mucin MUC5AC and MUC5B concentrations and the initiation and progression of chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort. Lancet Respir. Med. 2021;9(11). https://doi.org/10.1016/S2213-2600(21)00079-5
12. Bonser L.R., Erle D.J. Airway mucus and asthma: The role of MUC5AC and MUC5B. Journal of Clinical Medicine. 2017;6(12). https://doi.org/10.3390/jcm6120112
13. Hellings P.W., Steelant B. Epithelial barriers in allergy and asthma. Journal of Allergy and Clinical Immunology. 2020;145(6). https://doi.org/10.1016/j.jaci.2020.04.010
14. Shen L., Weber C.R., Raleigh D.R., Yu D., Turner J.R. Tight junction pore and leak pathways: A dynamic duo. Annu. Rev. Physiol. 2011;73. https://doi.org/10.1146/annurev-physiol-012110-142150
15. Hartsock A., Nelson W.J. Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochimica et Biophysica Acta – Biomembranes. 2008;1778(3). https://doi.org/10.1016/j.bbamem.2007.07.012
16. Ganesan S., Comstock A.T., Sajjan U.S. Barrier function of airway tract epithelium. Tissue Barriers. 2013;1(4). https://doi.org/10.4161/tisb.24997
17. Shahana S. et al. Ultrastructure of bronchial biopsies from patients with allergic and non-allergic asthma. Respir. Med. 2005;99(4). https://doi.org/10.1016/j.rmed.2004.08.013
18. Fang L., Sun Q., Roth M. Immunologic and non-immunologic mechanisms leading to airway remodeling in asthma. International Journal of Molecular Sciences. 2020;21(3). https://doi.org/10.3390/ijms21030757
19. Higashi T., Arnold T.R., Stephenson R.E., Dinshaw K.M., Miller A.L. Maintenance of the Epithelial Barrier and Remodeling of Cell-Cell Junctions during Cytokinesis. Curr. Biol. 2016;26(14). https://doi.org/10.1016/j.cub.2016.05.036
20. Sugita K. et al. Outside-in hypothesis revisited: The role of microbial, epithelial, and immune interactions. Annals of Allergy, Asthma and Immunology. 2020;125(5). https://doi.org/10.1016/j.anai.2020.05.016
21. Mitamura Y. et al. Dysregulation of the epithelial barrier by environmental and other exogenous factors. Contact Dermatitis. 2021;85(6). https://doi.org/10.1111/cod.13959
22. Heijink I.H. et al. Epithelial cell dysfunction, a major driver of asthma development. Allergy: European Journal of Allergy and Clinical Immunology. 2020;75(8). https://doi.org/10.1111/all.14421
23. Hackett T.L. et al. Intrinsic phenotypic differences of asthmatic epithelium and its inflammatory responses to respiratory syncytial virus and air pollution. Am. J. Respir. Cell Mol. Biol. 2011;45(5). https://doi.org/10.1165/rcmb.2011-0031OC
24. Carlier F.M., C. de Fays, Pilette C. Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Frontiers in Physiology. 2021;12. https://doi.org/10.3389/fphys.2021.691227
25. Kortekaas I. Krohn et al. Nasal epithelial barrier dysfunction increases sensitization and mast cell degranulation in the absence of allergic inflammation. Allergy Eur. J. Allergy Clin. Immunol. 2020;75(5). https://doi.org/10.1111/all.14132
26. Wan H. et al. The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus. Clin. Exp. Allergy. 2001;31(2). https://doi.org/10.1046/j.1365-2222.2001.00970.x
27. Petecchia L. et al. Bronchial airway epithelial cell damage following exposure to cigarette smoke includes disassembly of tight junction components mediated by the extracellular signal-regulated kinase 1/2 pathway. Chest. 2009;135(6). https://doi.org/10.1378/chest.08-1780
28. Short K.R. et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur. Respir. J. 2016;47(3). https://doi.org/10.1183/13993003.01282-2015
29. Saatian B. et al. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue Barriers. 2013;1(2). https://doi.org/10.4161/tisb.24333
30. Buckle F.G., Cohen A.B. Nasal mucosal hyperpermeability to macromolecules in atopic rhinitis and extrinsic asthma. J. Allergy Clin. Immunol. 1975;55(4). https://doi.org/10.1016/0091-6749(75)90139-6
31. Ilowite J.S., Bennett W.D., Sheetz M.S., Groth M.L., Nierman D.M. Permeability of the bronchial mucosa to 99mTc-DTPA in asthma. Am. Rev. Respir. Dis. 1989;139(5). https://doi.org/10.1164/ajrccm/139.5.1139
32. Lemarchand P., Chinet T., Collignon M.A., Urzua G., Barritault L., Huchon G.J. Bronchial clearance of DTPA is increased in acute asthma but not in chronic asthma. Am. Rev. Respir. Dis. 1992;145(1). https://doi.org/10.1164/ajrccm/145.1.147
33. Donno Del M., Chetta A., Foresi A., Gavaruzzi G., Ugolotti G., Olivieri D. Lung epithelial permeability and bronchial responsiveness in subjects with stable asthma. Chest. 1997;111(5). https://doi.org/10.1378/chest.111.5.1255
34. Taylor S.M., Downes H., Hirshman C.A., Peters J.E., Leon D. Pulmonary uptake of mannitol as an index of changes in lung epithelial permeability. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983;55(2). https://doi.org/10.1152/jappl.1983.55.2.614
35. Georas S. et al. The leaky lung test: a pilot study using inhaled mannitol to measure airway barrier function in asthma. J. Asthma. 2019;56(12). https://doi.org/10.1080/02770903.2018.1536145
36. Almuntashiri S., Zhu Y., Han Y., Wang X., Somanath P.R., Zhang D. Club cell secreted protein CC16: Potential applications in prognosis and therapy for pulmonary diseases. Journal of Clinical Medicine. 2020;9(12). https://doi.org/10.3390/jcm9124039
37. Sturgeon C., Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers. 2016;4(4). https://doi.org/10.1080/21688370.2016.1251384
38. Vieira Braga F.A. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 2019;25(7). https://doi.org/10.1038/s41591-019-0468-5
39. Plasschaert L.W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature. 2018;560(7718). https://doi.org/10.1038/s41586-018-0394-6
40. Steelant B., Seys S.F., Boeckxstaens G., Akdis C.A., Ceuppens J.L., Hellings P.W. Restoring airway epithelial barrier dysfunction: a new therapeutic challenge in allergic airway disease. Rhinol. J. 2017;54(3). https://doi.org/10.4193/rhin15.376
41. Wawrzyniak P. et al. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J. Allergy Clin. Immunol. 2017;139(1). https://doi.org/10.1016/j.jaci.2016.03.050
42. Fukuda K. et al. Epithelial-to-mesenchymal transition is a mechanism of ALK inhibitor resistance in lung cancer independent of ALK mutation status. Cancer Res. 2019;79(7). https://doi.org/10.1158/0008-5472.CAN-18-2052
Review
For citations:
Khramova R.N., Eliseeva T.I., Potemina T.E. Epithelial barrier dysfunction in bronchial asthma. Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2022;(4):56-61. (In Russ.) https://doi.org/10.20340/vmi-rvz.2022.4.MORPH.3