Digital technologies in prosthetic dentistry: a systematic analysis of the effectiveness of individualized prosthodontics
https://doi.org/10.20340/vmi-rvz.2025.5.DENT.1
Abstract
Background. Traditional dental prosthetic methods are characterized by marginal fit errors of 100–200 μm, fabrication times of 2–6 weeks, and postoperative complication rates of 15–40%. Digital technologies — CAD/CAM systems, intraoral scanning, and additive manufacturing — represent a paradigm shift in prosthetic dentistry; however, systematized data on their clinical effectiveness and economic feasibility remain fragmented.
Aim. To conduct a systematic analysis of the accuracy, clinical effectiveness, and economic indicators of digital technologies in prosthetic dentistry compared to traditional methods.
Materials and methods. A systematic review was performed according to the PRISMA protocol. Searches were conducted in PubMed, Scopus, Web of Science, and Cochrane Library (2013–2023). Forty-seven studies were included: 23 randomized controlled trials, 18 prospective cohort studies, and 6 systematic reviews with meta-analysis. Cumulative sample: 6,284 patients, 8,917 prostheses. Primary endpoints: marginal fit accuracy (μm), fabrication time (days), complication rate (%). Secondary endpoints: patient satisfaction (OHIP-14), prosthesis cost (euros), corrective visits. Study quality was assessed using Cochrane Risk of Bias Tool 2.0 and NewcastleOttawa scales. Statistical analysis: weighted mean differences with 95% confidence intervals, meta-regression (RevMan 5.4, Stata 17.0).
Results. Digital technologies reduced marginal fit errors from 127.5 μm to 34.2 μm (weighted mean difference –93.3 μm; 95% CI: –102.1 to –84.5; p<0.001), representing a 73.2% relative improvement. Best results were achieved with monolithic zirconia crowns fabricated by CAD/CAM milling: 23.1 μm versus 134.2 μm (p><0.001). Median fabrication time for fixed prostheses decreased from 14 to 2 days (p><0.001). Chairside CAD/CAM technology enabled single-visit completion in 78% of cases (mean time 87 ± 23 minutes). The incidence of inflammatory complications at 12 months decreased from 14.8% to 6.2% (relative risk 0.42; 95% CI: 0.31–0.57; p >< 0.001). Temporomandibular joint dysfunction frequency decreased from 8.9% to 3.4% (relative risk 0.38; p = 0.001). Secondary caries developed in 2.8% versus 9.4% with traditional prosthodontics (relative risk 0.30; p<0.001). Cumulative survival of fixed prostheses at 24 months was 96.8% for digital versus 92.3% for traditional constructions (p=0.002). Mean OHIP-14 score: 41.2±6.3 versus 35.7±8.1 points (difference 5.5; 95% CI: 4.2–6.8; p><0.001). Adaptation time to removable prostheses decreased from 16.8 to 4.2 days (p><0.001). Cost per single crown decreased from €280 to €195 (30.4% savings). Economic efficiency is achieved with monthly volumes ≥12 prostheses, reaching break-even at 18–24 months. Implementation barriers: equipment cost €109,500–128,400, learning curve with optimal accuracy achieved after >100 procedures, post-processing of 3D-printed constructions required in 11.3% of cases, scanning artifacts in subgingival preparations in 8.4% of cases. Meta-regression revealed accuracy improvement of 0.142 μm per additional procedure (p=0.003).
Conclusions. Digital technologies demonstrate statistically and clinically significant superiority over traditional methods in marginal fit accuracy (73.2% improvement), fabrication time (7-fold reduction), complication rates (58–70% decrease), patient quality of life, and under certain conditions — economic indicators. Optimal cost-effectiveness is achieved in clinics with volumes ≥12 prostheses/month. Structured educational programs to overcome the learning curve, protocol standardization, and ensuring equitable access to technologies are critically important.
Keywords
About the Authors
A. V. IvashchenkoРоссия
Anton V. Ivashchenko, Dr. Sci. (Tech.), Professor, Director of the Advanced Medical Engineering School,
Chapaevskaya St., 89, Samara, 443099
D. D. Ogurtsov
Россия
Daniil D. Ogurtsov, Institute of Dentistry,
Chapaevskaya St., 89, Samara, 443099
A. B. Eredzhepov
Aziz B. Eredzhepov, Dentist-surgeon, Institute of Dentistry,
Chapaevskaya St., 89, Samara, 443099
V. P. Tlustenko
Valentina P. Tlustenko, Dr. Sci. (Med.), Professor, Department of Orthopedic Dentistry,
Chapaevskaya St., 89, Samara, 443099
References
1. 1 Abduo J, Lyons K, Swain M. Fit of zirconia fixed partial denture: a systematic review. J Oral Rehabil. 2010;37(11):866-876. https://doi.org/10.1111/j.1365-2842.2010.02113.x
2. 2 Ahlholm P, Sipilä K, Vallittu P, et al. Digital versus conventional impressions in fixed prosthodontics: a review. J Prosthodont. 2018;27(1):35- 41. https://doi.org/10.1111/jopr.12527
3. 3 Alghazzawi TF. Advancements in CAD/CAM technology: options for practical implementation. J Prosthodont Res. 2016;60(2):72-84. https://doi.org/10.1016/j.jpor.2016.01.003
4. 4 Anadioti E, Aquilino SA, Gratton DG, et al. 3D and 2D marginal fit of pressed and CAD/CAM lithium disilicate crowns made from digital and conventional impressions. J Prosthodont. 2014;23(8):610-617. https://doi.org/10.1111/jopr.12180
5. 5 Aragón ML, Pontes LF, Bichara LM, et al. Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: a systematic review. Eur J Dent. 2016;10(3):429-434. https://doi.org/10.4103/1305-7456.184156
6. 6 Bai L, Ji P, Li X, et al. Mechanical characterization of 3D-printed individualized Ti-mesh (membrane) for alveolar bone defects. J Healthc Eng. 2019;2019:4231872. https://doi.org/10.1155/2019/4231872
7. 7 Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J. 2008;204(9):505-511. https://doi.org/10.1038/sj.bdj.2008.350
8. 8 Boeddinghaus M, Breloer ES, Rehmann P, Wöstmann B. Accuracy of single-tooth restorations based on intraoral digital and conventional impressions in patients. Clin Oral Investig. 2015;19(8):2027-2034. https://doi.org/10.1007/s00784-015-1430-7
9. 9 Briguglio F, Falcomatà D, Marconcini S, et al. The use of titanium mesh in guided bone regeneration: a systematic review. Int J Dent. 2019;2019:9065423. https://doi.org/10.1155/2019/9065423
10. 10 Chochlidakis KM, Papaspyridakos P, Geminiani A, et al. Digital versus conventional impressions for fixed prosthodontics: a systematic review and meta-analysis. J Prosthet Dent. 2016;116(2):184-190.e12. https://doi.org/10.1016/j.prosdent.2015.12.017
11. 11 Christensen GJ. Will digital impressions eliminate the current problems with conventional impressions? J Am Dent Assoc. 2008;139(6):761- 763. https://doi.org/10.14219/jada.archive.2008.0258
12. 12 Cucchi A, Bianchi A, Calamai P. Clinical and volumetric outcomes after vertical ridge augmentation using computer-aided-design/computeraided manufacturing (CAD/CAM) customized titanium meshes: a pilot study. BMC Oral Health. 2020;20(1):219. https://doi.org/10.1186/s12903-020-01205-4
13. 13 Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015;219(11):521-529. https://doi.org/10.1038/sj.bdj.2015.914
14. 14 Ender A, Attin T, Mehl A. In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions. J Prosthet Dent. 2016;115(3):313-320. https://doi.org/10.1016/j.prosdent.2015.09.011
15. 15 Ender A, Mehl A. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision. J Prosthet Dent. 2013;109(2):121-128. https://doi.org/10.1016/S0022-3913(13)60028-1
16. 16 Fasbinder DJ. Digital dentistry: innovation for restorative treatment. Compend Contin Educ Dent. 2010;31(Spec No 4):2-11.
17. 17 Fasbinder DJ, Dennison JB, Heys D, Neiva G. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns: a two-year report. J Am Dent Assoc. 2010;141 Suppl 2:10S-14S. https://doi.org/10.14219/jada.archive.2010.0355
18. 18 Fehmer V, Mühlemann S, Hämmerle CH, Sailer I. Criteria for the selection of restoration materials. Quintessence Int. 2014;45(8):723-730. https://doi.org/10.3290/j.qi.a32205
19. 19 Flügge TV, Att W, Metzger MC, Nelson K. Precision of dental implant digitization using intraoral scanners. Int J Prosthodont. 2016;29(3):277- 283. https://doi.org/10.11607/ijp.4417
20. 20 Fukazawa S, Odaira C, Kondo H. Investigation of accuracy and reproducibility of abutment position by intraoral scanners. J Prosthodont Res. 2017;61(4):450-459. https://doi.org/10.1016/j.jpor.2017.01.005
21. 21 Gjelvold B, Chrcanovic BR, Korduner EK, et al. Intraoral digital impression technique compared to conventional impression technique. A randomized clinical trial. J Prosthodont. 2016;25(4):282-287. https://doi.org/10.1111/jopr.12410
22. 22 Güth JF, Edelhoff D, Schweiger J, Keul C. A new method for the evaluation of the accuracy of full-arch digital impressions in vitro. Clin Oral Investig. 2016;20(7):1487-1494. https://doi.org/10.1007/s00784-015-1626-x
23. 23 Güth JF, Keul C, Stimmelmayr M, et al. Accuracy of digital models obtained by direct and indirect data capturing. Clin Oral Investig. 2013;17(4):1201-1208. https://doi.org/10.1007/s00784-012-0795-0
24. 24 Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent. 1989;62(4):405-408. https://doi.org/10.1016/0022-3913(89)90170-4
25. 25 Jemt T, Lie A. Accuracy of implant-supported prostheses in the edentulous jaw: analysis of precision of fit between cast gold-alloy frameworks and master casts by means of a three-dimensional photogrammetric technique. Clin Oral Implants Res. 1995;6(3):172-180. https://doi.org/10.1034/j.1600-0501.1995.060305.x
26. 26 Katsoulis J, Takeichi T, Sol Gaviria A, et al. Misfit of implant prostheses and its impact on clinical outcomes. Definition, assessment and a systematic review of the literature. Eur J Oral Implantol. 2017;10 Suppl 1:121-138.
27. 27 Keul C, Güth JF. Accuracy of full-arch digital impressions: an in vitro and in vivo comparison. Clin Oral Investig. 2020;24(2):735-745. https://doi.org/10.1007/s00784-019-02965-2
28. 28 Khare M, Suprabha BS, Shenoy R, Rao A. Comparison of patient satisfaction and treatment efficiency between conventional and digital workflows in prosthodontic rehabilitation. Int J Prosthodont. 2021;34(2):180-186. https://doi.org/10.11607/ijp.6857
29. 29 Kim JE, Amelya A, Shin Y, Shim JS. Accuracy of intraoral digital impressions using an artificial landmark. J Prosthet Dent. 2017;117(6):755- 761. https://doi.org/10.1016/j.prosdent.2016.09.016
30. 30 Lerner H, Mouhyi J, Admakin O, Mangano F. Artificial intelligence in fixed implant prosthodontics: a retrospective study of 106 implantsupported monolithic zirconia crowns inserted in the posterior jaws of 90 patients. BMC Oral Health. 2020;20(1):80. https://doi.org/10.1186/s12903-020-1062-4
31. 31 Liu Q, Leu MC, Schmitt SM. Rapid prototyping in dentistry: technology and application. Int J Adv Manuf Technol. 2006;29(3-4):317-335. https://doi.org/10.1007/s00170-005-2523-2
32. 32 Logozzo S, Zanetti EM, Franceschini G, et al. Recent advances in dental optics – Part I: 3D intraoral scanners for restorative dentistry. Opt Lasers Eng. 2014;54:203-221. https://doi.org/10.1016/j.optlaseng.2013.07.017
33. 33 Mangano C, Bianchi A, Mangano FG, et al. Custom made 3D printed subperiosteal titanium implants for the prosthetic restoration of the atrophic posterior mandible of elderly patients: a case series. 3D Print Med. 2020;6(1):1. https://doi.org/10.1186/s41205-019-0055-x
34. 34 Marghalani A, Weber HP, Finkelman M, et al. Digital versus conventional implant impressions for partially edentulous arches: an evaluation of accuracy. J Prosthet Dent. 2018;119(4):574-579. https://doi.org/10.1016/j.prosdent.2017.07.002
35. 35 Miyazaki T, Hotta Y, Kunii J, et al. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J. 2009;28(1):44-56. https://doi.org/10.4012/dmj.28.44
36. 36 Nawafleh N, Hatamleh M, Elshiyab S, Mack F. Accuracy and reliability of methods to measure marginal adaptation of crowns and FDPs: a literature review. J Prosthodont. 2013;22(5):419-428. https://doi.org/10.1111/jopr.12006
37. 37 Nedelcu R, Olsson P, Nyström I, et al. Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: a novel in vivo analysis method. J Dent. 2018;69:110-118. https://doi.org/10.1016/j.jdent.2017.12.006
38. 38 Ovcharenko E.N., Zaredinova T.R., Kurtmulaeva L.N., et al. Intraoral scanning in modern dentistry: advantages, disadvantages, and development prospects. Modern Science: Current Problems of Theory and Practice. Series: Natural and Technical Sciences. 2024;03/2:121–126. (In Russ.) https://doi.org/10.37882/2223-2966.2024.3-2.19
39. 39 Park JM, Hong YS, Park EJ, et al. Clinical evaluation of zirconia crowns fabricated using three different CAD/CAM systems. J Adv Prosthodont. 2018;10(5):326-331. https://doi.org/10.4047/jap.2018.10.5.326
40. 40 Patzelt SB, Emmanouilidi A, Stampf S, et al. Accuracy of full-arch scans using intraoral scanners. Clin Oral Investig. 2014;18(6):1687-1694. https://doi.org/10.1007/s00784-013-1132-y
41. 41 Pradíes G, Zarauz C, Valverde A, et al. Clinical evaluation comparing the fit of all-ceramic crowns obtained from silicone and digital intraoral impressions based on wavefront sampling technology. J Dent. 2015;43(2):201-208. https://doi.org/10.1016/j.jdent.2014.12.007
42. 42 Reich S, Wichmann M, Nkenke E, Proeschel P. Clinical fit of all-ceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems. Eur J Oral Sci. 2005;113(2):174-179. https://doi.org/10.1111/j.1600-0722.2004.00197.x
43. 43 Revilla-León M, Gonzalez-Martín Ó, Pérez López J, et al. Position accuracy of implant analogs on 3D printed polymer versus conventional definitive casts. J Prosthodont. 2018;27(6):560-566. https://doi.org/10.1111/jopr.12708
44. 44 Rödiger M, Heinitz A, Bürgers R, Rinke S. Fitting accuracy of zirconia single crowns produced via digital and conventional impressions—a clinical comparative study. Clin Oral Investig. 2017;21(2):579-587. https://doi.org/10.1007/s00784-016-1907-4
45. 45 Rozov RA, Trezubov VN, Gerasimov AB, et al. Clinical analysis of the short-term and long-term results of the implant-supported Trefoil dental rehabilitation in Russia. Stomatologiya. 2020;99(5):50-55.
46. 46 Ryakhovsky A.N., Kostyukova V.V. Comparative laboratory study of the results of displaying the border of tooth stump preparation obtained using intraoral scanners. Dentistry. 2016;95(5):39-46. (In Russ.)
47. 47 Schaefer O, Watts DC, Sigusch BW, et al. Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: a three-dimensional analysis of accuracy and reproducibility. Dent Mater. 2012;28(3):320-326. https://doi.org/10.1016/j.dental.2011.12.008
48. 48 Schmidt A, Klussmann L, Wöstmann B, Schlenz MA. Accuracy of digital and conventional full-arch impressions in patients: an update. J Clin Med. 2020;9(3):688. https://doi.org/10.3390/jcm9030688
49. 49 Seelbach P, Brueckel C, Wöstmann B. Accuracy of digital and conventional impression techniques and workflow. Clin Oral Investig. 2013;17(7):1759-1764. https://doi.org/10.1007/s00784-012-0864-4
50. 50 Syrek A, Reich G, Ranftl D, et al. Clinical evaluation of all-ceramic crowns fabricated from intraoral digital impressions based on the principle of active wavefront sampling. J Dent. 2010;38(7):553-559. https://doi.org/10.1016/j.jdent.2010.03.015
51. 51 Trifković B, Vukoje K, Milošević M, Lazić V. Accuracy of digital and conventional impressions for fixed prosthodontics: a systematic review and meta-analysis. J Esthet Restor Dent. 2022;34(5):754-774. https://doi.org/10.1111/jerd.12908
52. 52 van der Meer WJ, Andriessen FS, Wismeijer D, Ren Y. Application of intra-oral dental scanners in the digital workflow of implantology. PLoS One. 2012;7(8):e43312. https://doi.org/10.1371/journal.pone.0043312
53. 53 van Noort R. The future of dental devices is digital. Dent Mater. 2012;28(1):3-12. https://doi.org/10.1016/j.dental.2011.10.014
54. 54 Wesemann C, Muallah J, Mah J, Bumann A. Accuracy and efficiency of full-arch digitalization and 3D printing: a comparison between desktop model scanners, an intraoral scanner, a CBCT model scan, and stereolithographic 3D printing. Quintessence Int. 2017;48(1):41-50. https://doi.org/10.3290/j.qi.a37130
55. 55 Yuzbasioglu E, Kurt H, Turunc R, Bilir H. Comparison of digital and conventional impression techniques: evaluation of patients' perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health. 2014;14:10. https://doi.org/10.1186/1472-6831-14-10
56. 56 Zarauz C, Valverde A, Martinez-Rus F, Pradíes G. Clinical evaluation comparing the fit of all-ceramic crowns obtained from silicone and digital intraoral impressions. Clin Oral Investig. 2016;20(4):799-806. https://doi.org/10.1007/s00784-015-1590-5
57. 57 Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res. 2018;97(2):140-147. https://doi.org/10.1177/0022034517737483
58. 58 Zimmermann M, Mehl A, Mörmann WH, Reich S. Intraoral scanning systems - a current overview. Int J Comput Dent. 2015;18(2):101-129.
Supplementary files
Review
For citations:
Ivashchenko A.V., Ogurtsov D.D., Eredzhepov A.B., Tlustenko V.P. Digital technologies in prosthetic dentistry: a systematic analysis of the effectiveness of individualized prosthodontics. Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH). 2025;15(5):232-248. (In Russ.) https://doi.org/10.20340/vmi-rvz.2025.5.DENT.1
JATS XML


















